Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies

This report outlines New Zealand child injury data and effective or promising injury prevention strategies
Executive Summary
1. Introduction
2. Child unintentional injuries in New Zealand: A snapshot of recent trends
3. Land transport injuries
4. Choking, Suffocation and Strangulation
5. Falls
6. Drowning
7. Inanimate mechanical forces
8. Animate mechanical forces
9. Poisoning
10. Burns and scalds

Use this colour guide to find the injury topic immediately from the fore edge of this book.
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies

Safekids Aotearoa

Suggested citation:
Safekids Aotearoa. (2015). Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies. Auckland, NZ: Safekids Aotearoa. You are welcome to use information from this publication as long as you acknowledge Safekids Aotearoa as the source.

Disclaimer
Safekids Aotearoa has endeavoured to ensure material in this document is technically accurate and reflects legal requirements. However, the document does not override legislation. Safekids Aotearoa does not accept liability for any consequences arising from the use of this document. If the user of this document is unsure whether the material is correct, they should make direct reference to the relevant legislation and contact Safekids Aotearoa.

Acknowledgements:
Safekids Aotearoa wishes to acknowledge the contribution of a range of people and organisations, in particular, we wish to thank: The Ministry of Health - for providing Safekids New Zealand with the necessary funds required to undertake this project; Dr Liz Craig – Former Director, NZ Child and Youth Epidemiology Service (University of Otago); Dr Jean Simpson – Director, New Zealand Child and Youth Epidemiology Service; Dr Sara Bennett – Independent Consultant; Brandon DeGraff – University of Otago, Injury Prevention Research Unit; Alex Woodley – Director, Point Research; Ally Palmer – Point Research; Moses Alatini – Policy Analyst, Safekids Aotearoa; Team at Safekids Aotearoa.

Note:
While the University of Otago’s Injury Prevention Research Unit provided a number of data tables for this report, all interpretation of the data has been undertaken by Safekids Aotearoa and Point Research.

The views expressed in this report are thus those of Safekids Aotearoa rather than those of the University of Otago’s Injury Prevention Research Unit.
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies
Executive Summary

In New Zealand, unintentional injuries are the third-leading cause of death in children under 14. These injuries not only have a high personal cost for children and families, but they have wider societal and economic impacts. While children can never be entirely protected from injury, a significant proportion of the unintentional injuries that lead to death or hospitalisation are preventable. The report aims to reduce the incidence and severity of unintentional injury in children. Its purpose is to examine the current data around deaths and hospitalisations from unintentional injury, identify high-risk populations and causes of injury, provide guidance and evidence for advocates and programme planners and raise public awareness.

Relevant child mortality and hospitalisation data for this report was sourced from the Injury Prevention Research Unit (IPRU) at the University of Otago, via the National Mortality Collection and National Minimum Data Set. Effective interventions and evidence of good practice were sourced from national and international injury prevention reports and scientific literature. Analysis shows nine in every 100,000 children living in New Zealand will suffer a fatal unintentional injury and 852 in every 100,000 New Zealand children are hospitalised due to unintentional injuries. The leading causes for hospitalisation differed from from fatalities, with falls, injuries from inanimate mechanical forces, non-motor vehicle traffic crashes and injuries from animate mechanical forces being identified as the main causes. Unlike fatal injuries, non-fatal injuries are evenly distributed across age groups. Apart from suffocation, young children were more likely to be injured by inanimate mechanical forces, 5-9 year olds were the most likely to experience falls and 10-14 year olds were the most likely to experience non-motor vehicle crashes. Identical to fatality rates, male children were 1.5 times more likely to be hospitalised from unintentional injuries than female children. Māori children have non-fatal injury rates twice the rate of Asian children and 1.5 times the rate of European children or other ethnicities. Pacific Island non-fatal injury rates are also relatively high.

New Zealand’s rate of child injuries is poor when compared to its international peers. New Zealand was ranked the lowest of 24 OECD nations in child and adolescent deaths by accidents in a 2007 UNICEF report and in 2009 scored just 33 out 60 in terms of child injury prevention. A need for greater funding for injury prevention in New Zealand has been recognised.

Broad categories of proven or promising strategies for child injury prevention include environmental modification, product modification, legislation, promoting safety devices, educational home visits, community based interventions or education and skills development.

The report contains an in-depth analysis of the nine major causes of unintentional injuries in New Zealand children. It evaluates them statistically by age group, gender, ethnicity and against international peers. It also references proven good-practice prevention strategies for each cause and there is a summary of what works at the beginning of each chapter. These leading causes are land transport injuries (motor vehicle traffic crashes and non-motor vehicle traffic crashes), suffocation, falls, drowning, inanimate mechanical forces, animate mechanical forces, poisoning and burns.

1 Introduction

1.1 Report purpose

Unintentional injury is the third-leading cause of death for children aged 0 to 14 years in New Zealand. Every year between 2006 and 2010, around 84 children on average died as a result of unintentional injury, and a further 7,713 were hospitalised between 2008 and 2012. Children affected by unintentional injury are disproportionately more likely to come from socioeconomically disadvantaged households.

Along with the high personal cost for New Zealand families, the social and economic cost of unintentional child injury is huge. The social and economic cost per child fatality was estimated as $8.05 million in 2008, which is significantly higher than the cost per fatality for the rest of the population ($5.74 million per fatality). This is attributed to the greater number of life-years lost when a child dies. In total, child fatalities were estimated to cost New Zealand $778.8 million in 2008.

Although minor child injuries happen on a regular basis and are often accepted as just a part of everyday life, many injuries that can have significant consequences are preventable.

The mission of Safekids Aotearoa is to reduce the incidence and severity of unintentional injury in children by raising public awareness about injury issues and providing evidence-based information to planners and decision-makers to improve child safety.

In this report, we specifically aim to:

- Describe relevant and recent data on child unintentional injury (deaths from 2006–2010 and non-fatal injuries from 2008–2012) in an accessible format;
- Identify high-priority populations and causes of child unintentional injury;
- Provide those working in injury prevention with information to help them advocate for child injury prevention and plan programmes; and
- Raise public awareness about how child unintentional injuries happen, and how they can be prevented.

The purpose of this document is to provide guidance on practical, effective injury prevention strategies and interventions that can be used to reduce unintentional child injuries. It is designed so that policy makers, injury prevention practitioners, community groups, whanau and family can implement and advocate for good practice. The majority of these strategies have a strong evidence base and it is likely that child injuries could be significantly reduced if these strategies were adopted.

The structure of the report is based on a World Health Organisation classification system (ICD-10) which uses national death and hospitalisation data. The indicators derived from this classification system enables trends to be tracked over time nationally, and permits comparisons to be made with other countries.

We begin by examining overall patterns of death and hospitalisation from unintentional injury among children in New Zealand, and compare our injury rates with those of other developed countries. We briefly describe the kinds of prevention activities that are currently taking place in New Zealand, and describe key recommendations from national and international research on what could be done to reduce the burden of child injury. We then focus on recent trends in some of the leading causes of injury among children: land transport injuries, suffocation, falls, drowning, and injuries from inanimate mechanical forces (jammed or crushing injuries from objects) and animate mechanical forces (bites, stings and injuries from humans, animals and insects), poisoning, and burns. For each leading cause of child injury, we make suggestions for targeted prevention activities.

1.2 Data sources and methods

Data on child injuries were provided by the Injury Prevention Research Unit (IPRU) at the University of Otago. Much of the information that we report is available online via the IPRU’s National Injury Query System (NIQS). Data that are not available on the NIQS were requested directly from the IPRU. Mortality data was obtained from the National Mortality Collection, while data on non-fatal hospitalisations are from the National Minimum Dataset (NMD). The categories used in these datasets are described in Appendix A, as are notes on the interpretation of these data. We have focussed on the five-year period between 2008 and 2012 for non-fatal injuries, and on 2006 to 2010 for fatalities. However, for looking at long-term injury trends we have used 2001 as a baseline to ensure that we have captured at least ten years of injury data (10 years for fatalities, and 12 years for non-fatal injuries). We have also looked at ten-year blocks for transport related injuries by District Health Board (DHB) (see Section 3), since the numbers included in this analysis are small. Where appropriate, we have reported confidence intervals (CI) and correlation coefficients (r) in order to assess whether trends and differences between groups are of statistical and practical significance.

We have focussed throughout this report on children aged 0 to 14, and where appropriate have examined injury trends by five-year age group (0-4, 5-9, and 10-14 years), gender (male and female), and broad ethnic group (European/Other, Asian, Pacific Island, and Māori). We have focussed on reporting injury rates (per 100,000 children) rather than raw numbers because the populations that we focus on (e.g., age and ethnic groups) differ in size.

We estimated populations using population estimates and projections from Statistics New Zealand. For the general population of children aged 0 to 14, and for age groups and genders, we have used population estimates at 30 June each year. Comparable population estimates are not available for ethnic groups, so for ethnic groups we have instead used population projections which use 2006 Census data as a baseline. For long-term injury trends (e.g., overall non-fatal injury in children between 2001 and 2012) we have used the rates reported by the IPRU on the NIQS.

Effective intervention and promising practices were identified from scientific literature and both national and international injury prevention reports based on the literature. These were considered and prioritised in light of the experiences of New Zealand, and opportunities for effective intervention.

Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies

Unintentional

Other injuries
2 Child unintentional injuries in New Zealand: A snapshot of recent trends

Summary

• Between 2006 and 2010, around 84 children aged 0 to 14 died each year of unintentional injuries. On average 7,713 children in this age group were hospitalised each year from non-fatal unintentional injuries between 2008 and 2012. This means that 7,797 die or are hospitalised from unintentional injuries each year, which is 861 in every 100,000 children.

• Male children had a higher rate of both death and hospitalisation from unintentional injuries than female children, and Māori and Pacific Island children showed disproportionately high rates of injury compared with other ethnic groups.

• Leading causes of injury deaths were suffocation (particularly among very young children), motor vehicle traffic crashes (especially as vehicle occupants), drowning (especially among young children), and non-motor vehicle traffic accidents (especially as cyclists).

• In contrast, leading causes of non-fatal hospitalisations were falls (especially from playground equipment and among children aged 5-9), injuries from inanimate mechanical forces (especially among young children aged 0 to 4), and non-motor vehicle traffic accidents (especially as cyclists and among older children).

• New Zealand compares relatively poorly to other wealthy nations on rates of childhood injury and on safety measures.
2.1 Deaths from unintentional injury

The big picture

An average of one hundred children aged 0 to 14 died of injuries each year between 2006 and 2010. Around eight out of every ten of these deaths was determined to be unintentional (84 per year).

Unintentional injury was the third-leading cause of death among children, accounting for 18 per cent of child deaths (Table 1). This means that each year, nine in every 100,000 children living in New Zealand will suffer a fatal unintentional injury.

The risk of fatal injuries increases as children grow older. For children less than a year old, unintentional injury accounts for only 3 per cent of deaths. However, among children aged one to 14 years, unintentional injury accounts for nearly one-third of all deaths.

TABLE 1: MORTALITY (NUMBER OF DEATHS) IN CHILDREN AGED 28 DAYS TO 14 YEARS BY CAUSE OF DEATH AND AGE GROUP, 2008–2012.

<table>
<thead>
<tr>
<th>Category</th>
<th><1year*</th>
<th>1–4 years</th>
<th>4–9 years</th>
<th>10–14 years</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical</td>
<td>340</td>
<td>202</td>
<td>88</td>
<td>116</td>
<td>746</td>
<td>56.0%</td>
</tr>
<tr>
<td>Unintentional injury</td>
<td>17</td>
<td>106</td>
<td>40</td>
<td>71</td>
<td>234</td>
<td>17.6%</td>
</tr>
<tr>
<td>Intentional injury</td>
<td>7</td>
<td>17</td>
<td>4</td>
<td>41</td>
<td>69</td>
<td>5.2%</td>
</tr>
<tr>
<td>SUDI/SUD**</td>
<td>246</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>262</td>
<td>19.7%</td>
</tr>
<tr>
<td>Missing data</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>12</td>
<td>0.9%</td>
</tr>
<tr>
<td>Other injury***</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>0.5%</td>
</tr>
<tr>
<td>Total</td>
<td>618</td>
<td>345</td>
<td>134</td>
<td>235</td>
<td>1332</td>
<td>100%</td>
</tr>
</tbody>
</table>

* This category represents infants 28 days and older, and less than one calendar year in age.

** Sudden Unexpected Death of Infant (SUDI) and Sudden Unexpected Death (SUD)

***This category includes injuries of undetermined intent and legal intervention/war.

Leading causes

The leading causes of unintentional injury death among children aged 0 to 14 (see Table 2) are different to the leading causes of hospitalisations in this age group. The most common causes of death from unintentional injury between 2006 and 2010 were:

- Suffocation (39% of all unintentional injury deaths among children);
- Motor vehicle traffic crashes (27%, especially as vehicle occupants);
- Drowning (10%); and
- Non-motor vehicle traffic crash injuries, such as pedestrians and among older children (9%).

TABLE 2: NUMBERS, RATES (PER 100,000), AND PERCENTAGES OF DEATHS FROM UNINTENTIONAL INJURY AMONG CHILDREN AGED 0–14 YEARS BY MAIN EXTERNAL CAUSE, 2006–2010.

<table>
<thead>
<tr>
<th>Main external cause of injury</th>
<th>No.</th>
<th>Rate</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suffocation*</td>
<td>164</td>
<td>3.7</td>
<td>39.1%</td>
</tr>
<tr>
<td>Motor vehicle traffic crash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>112</td>
<td>2.5</td>
<td>26.7%</td>
</tr>
<tr>
<td>Occupant</td>
<td>79</td>
<td>1.8</td>
<td>18.8%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>22</td>
<td>0.5</td>
<td>5.2%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>6</td>
<td>0.1</td>
<td>1.4%</td>
</tr>
<tr>
<td>Motorbike</td>
<td>3</td>
<td>0.1</td>
<td>0.7%</td>
</tr>
<tr>
<td>Other & unspecified</td>
<td>2</td>
<td>0.0</td>
<td>0.5%</td>
</tr>
<tr>
<td>Drowning</td>
<td>42</td>
<td>0.9</td>
<td>10.0%</td>
</tr>
<tr>
<td>Non-motor vehicle traffic crash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>0.8</td>
<td>8.8%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>6</td>
<td>0.1</td>
<td>1.4%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>20</td>
<td>0.4</td>
<td>4.8%</td>
</tr>
<tr>
<td>Other land transport</td>
<td>11</td>
<td>0.2</td>
<td>2.6%</td>
</tr>
<tr>
<td>Fire/flame</td>
<td>16</td>
<td>0.4</td>
<td>3.8%</td>
</tr>
<tr>
<td>Fall</td>
<td>10</td>
<td>0.2</td>
<td>2.4%</td>
</tr>
<tr>
<td>Poisoning</td>
<td>10</td>
<td>0.2</td>
<td>2.4%</td>
</tr>
<tr>
<td>Other specified and unspecified</td>
<td>24</td>
<td>0.5</td>
<td>5.7%</td>
</tr>
<tr>
<td>Total</td>
<td>420</td>
<td>9.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Care must be taken when interpreting these figures as there may be some cross-over between suffocation and SUDI/ SUD, with the majority of deaths in this category occurring in infants <1 year old.

Changes over time

There was an overall decline in deaths from unintentional injury in children aged 0 to 14 between 2001 and 2010, however it is not steady (Figure 1). Since 2007, suffocation has overtaken motor vehicle traffic crashes as the leading cause of unintentional injury death among children. This may be related to an increasing tendency for coroners and pathologists to recognise suffocation as a contributing factor in many cases of Sudden Infant Death in Infancy (SUDI) among children less than 12 months old. For those aged 1 year or over the leading cause of fatalities is motor vehicle crashes.

FIGURE 1: DEATH FROM UNINTENTIONAL INJURY IN CHILDREN AGED 0–14 YEARS OVER TIME, 2001–2010.

Distribution by age, gender, and ethnicity

As illustrated in Figure 2, the majority of deaths from unintentional injury is among children aged four and under. Suffocation and drowning are particular concerns among these very young children, with suffocation in particular primarily affecting children under 12 months. In contrast, deaths from motor vehicle traffic crashes represent a similar threat to children in all age groups.

FIGURE 2: FATAL INJURY IN CHILDREN AGED 0–14 BY MAIN EXTERNAL CAUSE AND AGE GROUP, 2006-2010.

19 \(r = -0.22 \) (a weak linear relationship). The correlation coefficient \(r \) measures the strength of a linear relationship between two variables, in this case, the decrease in unintentional deaths, over time.

Male children face a disproportionate rate of unintentional injury death. Between 2006 and 2010 the unintentional injury death rate for male children aged 0 to 14 was over 1.5 times that of females, with 12 in every 100,000 male children dying from an unintentional injury compared with 7 in every 100,000 female children (Figure 3).22

FIGURE 3: FATAL INJURIES IN CHILDREN AGED 0 TO 14 BY GENDER AND MAIN EXTERNAL CAUSE, 2006 TO 2010.

<table>
<thead>
<tr>
<th>Gender</th>
<th>All unintentional injury death</th>
<th>Suffocation</th>
<th>Motor vehicle traffic crashes</th>
<th>Drowning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>11.7</td>
<td>4.4</td>
<td>2.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
<td>2.9</td>
<td>2.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Māori children aged 0-14 are significantly over-represented in unintentional injury fatalities.

FIGURE 4: DEATH FROM UNINTENTIONAL INJURY AMONG CHILDREN AGED 0 TO 14 BY ETHNIC GROUP, 2006–2010.

<table>
<thead>
<tr>
<th>Ethnic Group</th>
<th>European</th>
<th>Māori</th>
<th>Pacific</th>
<th>Asian</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>146</td>
<td>221</td>
<td>38</td>
<td>12</td>
<td>3</td>
<td>420</td>
</tr>
<tr>
<td>Percent</td>
<td>34.8</td>
<td>52.6</td>
<td>9.0</td>
<td>2.9</td>
<td>0.7</td>
<td>100%</td>
</tr>
<tr>
<td>Rate per 100,000</td>
<td>5.6</td>
<td>20.0</td>
<td>6.5</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22 95% Confidence Intervals (CI): males 10.6–12.6; females 6.0–8.0 per 100,000.
2.2 Hospitalisations from unintentional injury

Around 7,713 children aged 0 to 14 were hospitalised from non-fatal, unintentional injuries each year between 2008 and 2012. This is around 852 in every 100,000 children (Table 3).

Leading causes

Leading causes of non-fatal hospitalisations from unintentional injury among children between 2008 and 2012 were different to the main causes of unintentional child injury deaths. While suffocation, motor vehicle traffic crashes, and drowning were leading causes of death between 2006 and 2010, the main causes of non-fatal injuries resulting in hospitalisation among children were:

- Falls (48%, especially among children aged 5 to 9 and involving playground equipment);
- Injuries from inanimate mechanical forces (objects); (19%, especially among young children aged four and under and from being caught or jammed between objects);
- Non-motor vehicle traffic crash injuries (9%, especially among older children and as cyclists); and
- Injuries from animate mechanical forces (5%, especially among older children and from being bitten, stung and injured by humans, animals or insects) (Table 3).

<table>
<thead>
<tr>
<th>Main external cause of injury</th>
<th>No.</th>
<th>Rate</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>18636</td>
<td>411.8</td>
<td>48.3%</td>
</tr>
<tr>
<td>Fall involving playground equipment</td>
<td>6186</td>
<td>136.7</td>
<td>16.0%</td>
</tr>
<tr>
<td>Fall on same level from slipping, tripping, and stumbling</td>
<td>1968</td>
<td>43.5</td>
<td>5.1%</td>
</tr>
<tr>
<td>Fall involving ice-skates, skis, roller-skates or skateboards</td>
<td>1705</td>
<td>37.7</td>
<td>4.4%</td>
</tr>
<tr>
<td>Inanimate mechanical forces</td>
<td>7467</td>
<td>165.0</td>
<td>19.4%</td>
</tr>
<tr>
<td>Struck by thrown, projected, or falling object</td>
<td>3337</td>
<td>73.7</td>
<td>8.7%</td>
</tr>
<tr>
<td>Striking against or struck by sports equipment</td>
<td>2387</td>
<td>52.7</td>
<td>6.2%</td>
</tr>
<tr>
<td>Non-motor vehicle traffic crash</td>
<td>3658</td>
<td>80.8</td>
<td>9.5%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>1877</td>
<td>41.5</td>
<td>4.9%</td>
</tr>
<tr>
<td>Other land transport</td>
<td>1517</td>
<td>33.5</td>
<td>3.9%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>264</td>
<td>5.8</td>
<td>0.7%</td>
</tr>
<tr>
<td>Total</td>
<td>2064</td>
<td>45.6</td>
<td>5.4%</td>
</tr>
<tr>
<td>Hit, struck, kicked, twisted, bitten, or scratched by another person</td>
<td>693</td>
<td>15.3</td>
<td>1.8%</td>
</tr>
<tr>
<td>Bitten or struck by dog</td>
<td>582</td>
<td>12.9</td>
<td>1.5%</td>
</tr>
<tr>
<td>Bitten or stung by nonvenomous insect/arthropod</td>
<td>286</td>
<td>6.3</td>
<td>0.7%</td>
</tr>
<tr>
<td>Poisoning</td>
<td>1541</td>
<td>34.1</td>
<td>4.0%</td>
</tr>
<tr>
<td>Motor vehicle traffic crash</td>
<td>1469</td>
<td>32.5</td>
<td>3.8%</td>
</tr>
<tr>
<td>Occupant</td>
<td>720</td>
<td>15.9</td>
<td>1.9%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>436</td>
<td>9.6</td>
<td>1.1%</td>
</tr>
<tr>
<td>Motorcyclist</td>
<td>176</td>
<td>3.9</td>
<td>0.5%</td>
</tr>
<tr>
<td>Cyclist</td>
<td>124</td>
<td>2.7</td>
<td>0.3%</td>
</tr>
<tr>
<td>Other & unspecified</td>
<td>13</td>
<td>0.3</td>
<td>0.0%</td>
</tr>
<tr>
<td>Burns from hot object/substances*</td>
<td>1215</td>
<td>26.8</td>
<td>3.2%</td>
</tr>
<tr>
<td>Suffocation</td>
<td>298</td>
<td>6.6</td>
<td>0.8%</td>
</tr>
<tr>
<td>Drowning</td>
<td>141</td>
<td>3.1</td>
<td>0.5%</td>
</tr>
<tr>
<td>Other specified and unspecified</td>
<td>1999</td>
<td>44.2</td>
<td>5.2%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>38563</td>
<td>852.2</td>
<td>100%</td>
</tr>
</tbody>
</table>

* This does not include burn injuries caused by exposure to fire and flames.
Changes over time

There has been an overall decline in the rate of unintentional injury in children aged 0 to 14 since 2001, with 1,101 out of every 100,000 children experiencing injury-related hospitalisation in 2001 and 826 in 2012 (Figure 5). This decline may be slightly underestimated, since DHBs have only been required to report short-stay emergency department events since mid-2009 (see Appendix A for more information).

FIGURE 5: NON-FATAL UNINTENTIONAL INJURY IN CHILDREN AGED 0-14 YEARS OVER TIME, 2001-2012.

![Graph showing hospitalisation rates over time](source: The National Injury Query System (NIQS): Injury Prevention Unit, University of Otago, http://ipru3.otago.ac.nz/niqs/).
Distribution by age, gender, and ethnicity

Whereas very young children (aged 0 to 4) had the highest rates of unintentional injury death (Figure 2), non-fatal injuries were more evenly distributed across children of all ages (Figure 6). Falls were slightly more common among 5–9-year-olds, with half of falls in this age category being from playground equipment (51%). Non-motor vehicle traffic crash injuries (e.g. injuries from cycling which were not from crashes with motor vehicles) were most common among 10–14-year-olds, while injuries from inanimate mechanical forces were most common among very young children (aged 0–4), with nearly half of injuries of this kind resulting from young children aged 0 to 4 being caught, crushed, or jammed between objects.

Between 2008 and 2012, male children aged 0 to 14 were hospitalised with non-fatal injuries at 1.5 times the rate of female children (Figure 7). One in every 100 male children was hospitalised during this time period, compared with 0.7 in every 100 female children. There were especially large differences between genders with regard to injuries from non-motor vehicle traffic crashes, where males had over twice the rates of hospitalisation of females, and around three times the rate of cycling injuries from non-motor vehicle traffic crashes. Boys were around 1.5 times as likely than girls to be injured from inanimate mechanical forces (objects) (such as being caught between objects, struck by or against something, or coming into contact with sharp glass).

23 While 95% confidence intervals for deaths among children aged 0-4 did not overlap with CIs for older age groups (lower bound for children aged 0-4 was 15.1, while the upper bound for older children was 6.3 deaths per 100,000), all morbidity 95% CIs overlapped, meaning that non-fatal injury rates were not significantly different at a 0.05 level between age groups.

24 1014.2 out of every 100,000 male children, and 688.0 out of every 100,000 females. 95% CIs did not overlap (upper bound for females was 706.4 hospitalisations per 100,000; lower bound for males was 963.5).
Māori and Pacific Island children aged 0 to 14 had higher rates of hospitalisation from unintentional injury than other ethnic groups between 2008 and 2012 (Figure 8). Nearly one in every hundred Māori children suffered a non-fatal injury during this time period (946 in every 100,000 children), which is over twice as high as the rate among Asian children (416 per 100,000 children), and nearly 1.5 times the rate for European and other ethnicities (654 per 100,000 children). Pacific Island children also had a relatively high rate of hospitalisation, with 792 in every 100,000 Pacific Island children suffering a non-fatal injury.

FIGURE 8: NON-FATAL UNINTENTIONAL INJURY IN CHILDREN AGED 0-14 YEARS BY ETHNICITY, 2008-2012.

2.3 International comparisons

In 2001, UNICEF released a report which indicated that, between 1991 and 1995, New Zealand ranked 22nd of the 26 OECD nations on child death from injuries.25 New Zealand’s rate of child injury death was 1.5 times that of Australia, and nearly three times that of Sweden during this period. This means that if New Zealand had achieved the same rate of child death as Sweden for the five-year period between 1991 and 1995, more than 300 children could still be alive today.

New Zealand’s rate of child injury death has declined since this period, from 13.7 out of every 100,000 children between 1991 and 1995 to 11.2 between 2006 and 2010.26 However, this still compares poorly to other OECD nations, whose collective average rate of injury death was 10.2 out of every 100,000 children between 1991 and 1995. More recent estimates indicate that New Zealand still compares poorly to other wealthy nations on rates of childhood and adolescent injury. For example, a 2007 UNICEF report indicated that New Zealand ranks lowest of the 24 OECD countries for which data are available on deaths from accidents among children and adolescents under the age of 19.27

On this basis, a 2009 assessment of our child and adolescent injury prevention position gave New Zealand an overall score of just 33 out of 60.28 This is considerably poorer than the highest-ranking European nations – which included Iceland at 44.5, and the Czech Republic, Netherlands, and Poland, which all received scores of 43.5 in 2012 – and falls slightly below the European-wide 2012 average score of 35.29 The researchers concluded that if New Zealand were to be placed alongside European countries for which data are available in 2009, we would rank 15th out of 25 on injury prevention for children and adolescents. New Zealand’s poor rating was based on deficiencies across many injury prevention topics, including passenger and driver safety, pedestrian safety, water safety, falls, poisoning, burns and scalds, and choking and strangulation. The authors of the report concluded that as well as taking further steps to target child and adolescent safety in these areas, New Zealand might also benefit from increasing funding for home visiting programmes.

A 2012 outcomes report on the New Zealand Injury Prevention Strategy30 (NZIPS) similarly indicated a need for further funding for injury prevention, noting that the level of government investment in injury prevention is low relative to its social and economic cost. The report also noted a need for greater collaboration and centralisation of prevention activities, and sustained prevention efforts over the long term.

26 The National Injury Query System (NIQS): Injury Prevention Unit, University of Otago, http://ipru3.otago.ac.nz/niqs/
30 The nation-wide injury prevention plan that operated between 2003 and 2013, which was replaced in 2014 by a Cross-government Injury Prevention Work Plan.
2.4 Prevention approach

It is increasingly recognised that improving child safety is a more complex problem than previously recognised. Rather than an over-reliance on ‘tame’ or ‘simple’ solutions effective child injury prevention requires dynamic solutions that address the complex contexts in which children are injured. As such, multifaceted interventions are effective in reducing injury or showing promise.

Our aim is to identify and focus on evidence-informed good practice and strategies most likely to reduce childhood injuries. In general, there are seven approaches that offer proven or promising strategies to reduce unintentional child injuries. These are:

1. Environmental modification – to make the world more child or family friendly. This could include reducing the height of playground equipment, or introducing traffic calming measures;
2. Product modification – for example child resistant caps for medication or poisonous substances;
3. Legislation, regulation and enforcement. This is considered highly effective, particularly when enforced and used in combination with other strategies. This includes laws that require the mandatory use of child restraints;
4. Promoting the use of safety devices, such as bike helmets or child passenger restraints;
5. Home visits to families of young children, where the information provided is age appropriate and combined with strategies, such as the provision of free safety equipment;
6. Community based interventions – which focus on changing community values and behaviours, along with the environment. An example of this is community based bicycle helmet campaigns;
7. Education and skills development. The evidence for this approach tends to be poor, however if well designed and if it has a strong audience focus, it may be more effective particularly if used in combination with other strategies.32

Good practice

Under each section, this guide outlines strategies that can be used to reduce child injuries ‘at a glance’. It is noted that many of the evidence informed interventions have been drawn from the European Child Safety Alliance’s publications33 and the “Child safety good practice guide: Good investments in unintentional child injury prevention and safety promotion.”34 For the purposes of this document, good practice is defined as:

- A prevention strategy that has been evaluated and found to be effective either through a robust evaluation or systematic review, or
- Expert opinion supports the practice and data suggests it is an effective strategy (e.g. life jackets and drowning prevention), or
- Expert opinion supports the practice and there is a clear link between the strategy and the reduction of risk (e.g. child-resistant packaging and medication to reduce unintentional child poisoning), and
- The strategy has been implemented and the practicalities of implementing it has been examined.

Limitations

It is noted that there are limitations in this approach, namely:

- The prevention of child injury is complex. Injury rates disproportionately affect different ages, communities and population groups. What works in one setting or with one cultural, population or age group may not work as well with another.
- Much of this evidence is international and has not been evaluated in a New Zealand context, and
- Injury prevention can benefit from an innovative, multi-pronged approach, particularly where strategies have not been effectively evaluated or do not yet exist.

33 http://www.childsafetyeurope.org/publications/
3 Land Transport Injuries

Summary

- Land transport crashes are a major cause of both fatal and non-fatal injuries among children. Motor vehicle traffic crashes (MVTCs) were the second-leading cause of fatal injuries between 2006 and 2010 after suffocation, and non-motor vehicle traffic (NMVT) crashes were the third-leading cause of non-fatal injuries between 2008 and 2012. There has been a decline in non-fatal child injury rates from land transport crashes since 2001.

- Over two-thirds (71%) of child deaths in MVTCs occur when children are vehicle occupants, followed by pedestrians (20%).

- Deaths from MVTCs affect all ages equally, but older children (aged 10-14) are more likely to sustain non-fatal injuries. Māori children were also disproportionately likely to be injured in MVTCs, especially as vehicle occupants.

- Children are most likely to suffer a non-fatal injury in NMVT crash as pedal cyclists (51%), but are most likely to die in NMVT crashes where they are pedestrians (54%). Very young children (aged 0 to 4) have a particularly high rate of death in NMVT crashes, especially as pedestrians. However, older children (aged 10 to 14) have the highest rate of non-fatal injuries in NMVT crashes, particularly when cycling and using other land transport.

- DHBs with the highest rates of injury from land transport crashes were Tairawhiti, Northland, Bay of Plenty, and Whanganui.

We could reduce the burden of child injury from motor vehicle crashes through:
- The correct use of child restraints
- Alcohol limits for drivers
- Traffic calming techniques
- Area wide traffic calming techniques.
- Legislation for the mandatory use of child restraints until a child reaches 148cm in height.

We could improve pedestrian safety through:
- The reduction of speed limits in residential areas and school zones, and its enforcement
- Vehicle modifications such as reversing mirrors and cameras
- Separating driveways from gardens and play areas, and separate pedestrian access from the property to footpath (path separate to the driveway)
- Training children to be safe on the roads, although the evidence is mixed
- Community awareness initiatives.

We could improve cycle safety through:
- The correct use of cycle helmets
- Increased visibility through visibility aids such as bio-motion detectors
- Cycle ways and pathways
- Area wide traffic calming
We have analysed land transport crashes by motor vehicle traffic crashes (MVTCs, e.g. pedal cyclist colliding with a motor vehicle on the road) versus non-motor vehicle traffic (NMVT) crashes (e.g. coming off a pedal bike at home). These two kinds of incidents show slightly different patterns of injury. Section 3.1 examines injuries from motor vehicle traffic crashes, while section 3.2 focusses on non-motor vehicle traffic crashes.

Injuries from all land transport crashes account for over one-third of child deaths from unintentional injury. However, fatalities from MVTCs are more than three times as common as fatalities from NMVT crashes (Table 2).

The reverse is true of non-fatal injuries: whereas land transport crashes account for 13 per cent of all non-fatal injuries in children aged 0 to 14, injuries from NMVT crashes are over twice as common as those from MVTCs (Table 3). This suggests that while MVTCs tend to happen at higher speeds and cause more severe injuries, children are more frequently involved in NMVT crashes, especially as cyclists.

3.1 Motor vehicle traffic crashes (MVTCs)

The big picture

Traffic crashes involving motor vehicles were, until recently, the overall leading cause of death from unintentional injury among children aged 0 to 14 (Figure 1). More recently, suffocation has become the leading cause of death from unintentional injury in children, though this primarily reflects an increase in the number of deaths attributed to suffocation in cases of Sudden Infant Death in infancy rather than a substantial decrease in fatalities from MVTCs.35

Between 2006 and 2010, MVTCs were the main cause of over one-quarter (27%) of all child deaths from unintentional injuries (Table 2), and caused the death of around 22 children each year. MVTCs accounted for 4 per cent of all non-fatal injuries in children between 2008 and 2012, with 294 children suffering non-fatal injuries from MVTCs each year (Table 3).

Taken together, this means that each year around 316 children either die or are hospitalised from traffic crashes involving motor vehicles. This is about 35 out of every 100,000 children.

Changes over time

Deaths from MVTCs declined between 2001 and 2010, from 3.3 deaths per 100,000 children to 1.7 in 2010 (Figure 9).36 Non-fatal injuries from MVTCs have also declined, with half as many non-fatal injuries from MVTCs in 2012 as in 2001 (50.4 per 100,000 children in 2001 compared with 25.2 in 2012).37

FIGURE 9: FATAL AND NON-FATAL INJURIES FROM MOTOR VEHICLE TRAFFIC CRASHES IN CHILDREN AGED 0–14 OVER TIME, 2001 TO 2012.

36 r=−0.62 (a moderately strong linear relationship).
37 r=−0.93 (a strong linear relationship).
Around half of all non-fatal MVTC injuries among children aged 0 to 14 between 2008 and 2012 occurred when children were vehicle occupants (49%) and over one-quarter when children were pedestrians (30%). This pattern is even more pronounced for fatal injuries, with over three-quarters of child deaths from MVTCs between 2006 and 2010 occurring when children were vehicle occupants (71%). Although fatal injuries from MVTCs affect all age groups equally (Figure 2), the risk of sustaining a non-fatal injury from a MVTC increases with age (Figure 10).38

Male children had over 1.5 times the rate of hospitalisation from MVTC injury as females between 2008 and 2012.39 Māori children also showed a disproportionately high rate of injury from MVTCs, being more than twice as likely for Asian or European/other children to suffer a non-fatal injury from a MVTC between 2008 and 2012 (Figure 11). Pacific Island children had the highest rates of non-fatal injury as pedestrians in MVTCs, but only around half the rate of injury as vehicle occupants that Māori children had.

While the differences in non-fatal MVTC injury rates were not significant at a 0.05 level between the 0-4 and 5-9 age groups, or between the 5-9 and 10-14 age groups, they were significantly different between those aged 0-4 and 10-14 (95% CI upper bound for those aged 0-4 was 24.8 per 100,000, while the lower bound for those aged 10-14 was 37.9). 95% confidence intervals did not overlap, meaning that rates of non-fatal injury were significantly different at a 0.05 level (upper bound for females was 27.8 hospitalisations per 100,000, while the lower bound for males was 33.2). There was not a statistically significant difference in fatality rates between genders at a 0.05 level.
Distribution by region

Overall, DHBs with the highest rates of child injury from MVTCs were:

- Tairawhiti (which sees around 71 injuries from MVTCs per 100,000 children each year);
- Northland (around 59 injuries per 100,000 children);
- Bay of Plenty (around 55 injuries per 100,000 children); and
- Whanganui (around 54 injuries per 100,000 children, Table 5).

<table>
<thead>
<tr>
<th>District Health Board</th>
<th>Deaths</th>
<th>Non-fatal injuries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Rate per 100,000</td>
</tr>
<tr>
<td>Tairawhiti</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Northland</td>
<td>19</td>
<td>5.4</td>
</tr>
<tr>
<td>Bay of Plenty</td>
<td>17</td>
<td>3.8</td>
</tr>
<tr>
<td>Whanganui</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Waikato</td>
<td>29</td>
<td>3.7</td>
</tr>
<tr>
<td>Hawkes Bay</td>
<td>23</td>
<td>6.6</td>
</tr>
<tr>
<td>West Coast</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Lakes</td>
<td>16</td>
<td>6.6</td>
</tr>
<tr>
<td>Counties Manukau</td>
<td>35</td>
<td>3.1</td>
</tr>
<tr>
<td>Mid Central</td>
<td>13</td>
<td>4.1</td>
</tr>
<tr>
<td>Otago</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Southland</td>
<td>6</td>
<td>2.7</td>
</tr>
<tr>
<td>Auckland</td>
<td>17</td>
<td>2.2</td>
</tr>
<tr>
<td>Taranaki</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Waitemata</td>
<td>17</td>
<td>1.6</td>
</tr>
<tr>
<td>South Canterbury</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Hutt</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Canterbury</td>
<td>13</td>
<td>1.4</td>
</tr>
<tr>
<td>Nelson Marlborough</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Wairarapa</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Capital and Coast</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Outside DHB/unknown</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>247</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Source: The National Injury Query System (NIQS): Injury Prevention Unit, University of Otago, [HYPERLINK](http://ipru3.otago.ac.nz/niqs/).
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies

Internationally

In 2009 New Zealand was amongst the worst countries in the OECD for deaths per 100,000 population and per billion kilometres travelled. The picture improves somewhat when the rate is per 10,000 vehicles. For this measure New Zealand sits around the middle of OECD countries. New Zealand’s comparable death rates are particularly poor for younger age groups. We are the third worst OECD country for deaths of those aged 0–14 years, and fifth worst for those aged 15–24 years [6]. The social cost of motor vehicle injury crashes in 2013 was estimated at $3.14 billion, a decrease by 8.6% from 2012. 40

Prevention

Passenger (occupant) safety

There has, however, been an overall decline in road crash fatalities, which is in line with the experience of other Western countries. A combination of safer cars, safer roads and roadsides, speeds, road use, infrastructure and roadside improvements (signage, median barriers, rumble strips), more effective enforcement, the use of child restraints, targeted education campaigns, improved vehicle crash worthiness and crash avoidance technology, to some extent better trauma care are likely to have contributed to this. 41

Relevant legislation and standards

Children under 7 years of age must be properly restrained by an approved child restraint that is appropriate for the age and size of the child.

Change to New Zealand’s Child Restraint Rule – 01 November 2013

TABLE 6: Changes to New Zealand’s child restraint rules – 01 November 2013

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Pre 01 November 2013</th>
<th>From 01 November 2013 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child must be restrained in an appropriate approved* child restraint</td>
<td>Until their 5th birthday</td>
<td>Until their 7th birthday</td>
</tr>
<tr>
<td>Child must be restrained in an appropriate approved child restraint or seatbelt if one is available</td>
<td>From their 5th birthday until their 8th birthday</td>
<td>From their 7th birthday until their 8th birthday</td>
</tr>
<tr>
<td>Child must use any child restraint or seatbelt that is available. If not available, they must travel in the back seat</td>
<td>Children aged eight to 14</td>
<td>Children aged eight to 14 - no change</td>
</tr>
<tr>
<td>Exception from using a child restraint</td>
<td>If a current medical certificate is provided certifying that use of a restraint is impracticable or undesirable for medical reasons, then the child does not have to be restrained in a child restraint or seatbelt. Applies to any person from age five and over</td>
<td>Exemption extended to include children under the age of five (previous medical certificate exemptions only available to children aged five or over)</td>
</tr>
<tr>
<td>If the vehicle is a goods vehicle (with an unladen weight exceeding 2000kg) in which seatbelts are not available, then a child under five years of age is not required to be restrained</td>
<td></td>
<td>This exception has been removed and so children must now be appropriately restrained if travelling in these vehicles</td>
</tr>
</tbody>
</table>

40 See the http://www.transport.govt.nz/research/roadcrashstatistics/thesocialcostofroadcrashesandinjuries/ downloaded 1/5/2015

Passenger safety good practice evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>The correct use and fit of child passenger restraints reduce death and injury [8-12].</td>
<td>For children aged less than four years [19]. Rearward-facing seats are safest for children younger than two years [17,18], and are up to five times safer than forward-facing restraints. Back seats are the safest place for child passengers – regardless of whether or not there is a side air bag [11,12,21-23]. Children in back seats are 31-64 percent less likely to be injured compared with those in front seats [22]. To reduce the risk of injury in a motor vehicle crash, a booster seat should be used once a child has outgrown a forward-facing restraint until they reach 148cm in height [12,20].</td>
</tr>
<tr>
<td>Enforcement</td>
<td></td>
</tr>
<tr>
<td>The correct use and fit of seatbelts reduces risk of death and injury [24-27].</td>
<td>For children aged 8-15 years, correct use and fit of seat belts reduce the risk of death by 45 percent and hospitalisation by 32 percent [11,28]. For children aged 5-14 years, back seat lap/shoulder belts are only 52 percent effective in reducing fatalities, and back seat lap belts are only 38 percent effective in reducing fatalities compared with no seat belt [27]. Legislation requiring child passenger restraints increases use and reduces injury [11,29-32, 37].</td>
</tr>
<tr>
<td>Legislate and enforce the use of child restraints</td>
<td>Legislation requiring the use of booster seats increases booster seat use and rear seating positioning, and reduces severe injury [34]. Legislation requiring the use of booster seats until the eighth birthday reduces the risk of fatality by at least 23 percent in six year olds, and 25 percent in seven year olds [30]. To increase compliance with legislation it is important to educate parents/caregivers on legislative changes including the principles driving recommendations, and to provide parents/caregivers with information on the process of appropriate child restraint use [35], [36].</td>
</tr>
<tr>
<td>Alcohol limits for drivers</td>
<td>Limiting alcohol when driving is a strategy protective for all age groups [43].</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Effective community based passenger safety interventions combine the involvement of the local community, multi-agency collaboration, long term strategy, effective focussed leadership, appropriate targeting, time to develop a range of local networks and initiatives and includes evaluation</td>
<td>Effective community based passenger safety interventions combine information dissemination on child passenger restraint safety with enhanced enforcement [29,38-41]. Community based interventions combining child passenger restraint distribution, loan programmes or incentives with education programmes lead to increased use [29,31,38,44]. Interventions targeting child acceptance of restraints are particularly effective in increasing child restraint use [42]. Education-only interventions increase booster seat use by 32 percent. Booster seats are twice as likely to be used when education is combined with provision of free booster seats [45]. Community based injury prevention projects in New Zealand demonstrated increased ownership and use of child restraints. Effective projects incorporated a combination of a child restraint loan scheme, media campaign, education sessions, check points, giveaway incentives and enforcement [40,41,44].</td>
</tr>
</tbody>
</table>

Further information and resources

3.2 Non-motor vehicle traffic (NMVT) injuries

The big picture

Between 2006 and 2010, land-based non-motor vehicle traffic crashes were the main cause in nearly one in ten (9%) child deaths from unintentional injury (Table 2). During this time, around 7 children were killed from NMVT crashes each year. NMVT crashes also accounted for nearly one in ten non-fatal hospitalisations from unintentional injury in children between 2008 and 2012 (10%, Table 3), which affected 732 children each year.

Taken together, this means that each year around 739 children incur injuries from NMVT crashes that result in either hospitalisation or death. This is around 82 out of every 100,000 children.

Changes over time

Death rates from NMVT crashes remained similar between 2001 and 2010 (Figure 12). As with motor vehicle traffic crashes, there has been a decline in the rate of non-fatal injuries from non-motor vehicle traffic crashes, with the 2012 rate being roughly two-thirds that of 2001.\(^{42}\)

FIGURE 12: INJURIES (FATAL AND NON-FATAL) FROM NON-MOTOR VEHICLE TRAFFIC CRASHES IN CHILDREN AGED 0–14 OVER TIME, 2001 TO 2012.

\(^{42}\) r=-0.88 (a strong linear decline).
Leading causes by age group

The types of non-motor vehicle traffic crash injuries that put children at greatest risk of injury differ for fatal and non-fatal injuries. While children are most likely to suffer a non-fatal injury from a NMVT injury as pedal cyclists (51% of hospitalisations of all NMVTs), they are most likely to die in crashes where they are pedestrians (54% of deaths of all NMVT deaths, Tables 2 and 3).

Very young children (aged 0 to 4) have a particularly high rate of death in NMVT crashes especially as pedestrians. Of the 37 fatal NMVT crashes between 2006 and 2010, nearly half of deaths were among children aged 0 to 4 (46%, n=17), and nearly all fatalities among very young children occurred when they were pedestrians (88% of fatalities from NMVT crashes in this age group, n=15).

However, older children (aged 10 to 14) have the highest rate of non-fatal injuries in NMVT crashes, particularly when cycling and using other land transport (Figure 13). In general, the older the child, the greater the risk of sustaining a non-fatal injury from a NMVT crash.43

It should be noted that when cycling, children aged 10 to 14 are at greater risk of injury from NMVT crashes than from motor vehicle traffic crashes (see Tables 2 and 3, Figures 6 and 10). While around 3 in every 100,000 children are injured as cyclists in motor vehicle traffic crashes, around 42 are injured in NMVT crashes.

FIGURE 13: NON-FATAL INJURIES FROM NON-MOTOR VEHICLE TRAFFIC CRASHES IN CHILDREN AGED 0–14 BY AGE GROUP AND CRASH TYPE, 2008 TO 2012.

43 95% confidence intervals do not overlap for any group, meaning that non-fatal injury rates from NMVT accidents are significantly different at a 0.05 level between age groups.

44 95% confidence intervals do not overlap; while the upper bound for females is 55.9 hospitalisations from NMVT accidents per 100,000, the male lower bound is 88.8. Hence the difference is significant.
Distribution by gender, ethnicity, and region

Males between 0 and 14 had over twice the rate of hospitalisation from NMVT crashes of females in this age group between 2008 and 2012 (Figure 14). In particular, males were injured in NMVT crashes as pedal cyclists at three times the rate of females.

Ethnicity-based patterns of non-fatal injuries from NMVT crashes differ to those from motor vehicle traffic crashes. Whereas Māori children were the most likely to be injured in motor vehicle crashes, European/other and Māori children were equally likely to be injured in non-motor vehicle traffic incidents, though Māori were more likely to be injured when cycling and European/other children when using other land transport modes (Figure 15).

Rates of death and injury from NMVT crashes vary regionally, and closely resemble the regional distribution of motor vehicle traffic crashes (see section 3.1). For example, the DHBs with the top rates of non-fatal injury from NMVT crashes between 2003 and 2012 were Whanganui (178.8 children injured per 100,000), Tairawhiti (171.1), Bay of Plenty (155.7), Lakes (131.1), Northland (126.1), and Hawke's Bay (121.1). These six DHBs also saw the highest rates of injury from motor vehicle traffic crashes, suggesting that transport safety is of significant concern in these areas.
Prevention

Countries with the best road safety outcomes tend to have national implementation plans involving political commitment, strong leadership and a multisectoral approach incorporating engineering, enforcement and awareness interventions [53, 55, 57,70].

Relevant legislation and standards

There are a number of sections in the Land Transport (Road User) Act (2004) that are relevant to child pedestrians. These include:

- Use of a footpath

- Passing at school crossing point

- Speed limit relating to stationary school bus

Child pedestrian safety

Walking allows children and young people to learn about their environment, improve their fitness and explore their surroundings. Child pedestrian injuries can be severe and fatal. In general, safety can be improved by separating children from motor vehicles, using traffic calming measures to reduce the speed of motor vehicles and making children more visible to drivers.45

Child pedestrian safety and assessment of evidence at a glance

Evidence-based good practices for the prevention and reduction of child pedestrian injuries and deaths include:

- Area wide traffic calming techniques – promising evidence
- The reduction of speed limits in residential areas and school zones, and its enforcement – good evidence
- Vehicle modifications such as reversing mirrors and cameras – good evidence
- Separating driveways from gardens and play areas – good evidence
- Training children to be safe on the roads – the evidence is mixed
- Community awareness initiatives – promising evidence

Child pedestrian good practice evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Area-wide engineering interventions reduce pedestrian risk and result in fewer injuries.</td>
<td>Area-wide traffic calming solutions and pedestrian facilities in towns and cities reduce child pedestrian injury and fatality, and are cost effective [31,49-52]. Interventions should reflect child developmental capabilities and limitations and be targeted to areas of high child pedestrian traffic around schools, and particularly where such areas adjoin, or are close to, main roads or rural highways [53]. Traffic calming solutions targeted to areas of socioeconomic disadvantage may reduce inequalities in child pedestrian injury [49]. Self-explaining roads in Point England, Auckland have reduced vehicular speed on residential and collector roads [56].</td>
</tr>
<tr>
<td>Vehicle modifications reduce child pedestrian injury and fatality.</td>
<td>Safer car front design reduces child pedestrian injury and fatality [57]. Bull bars increase the severity of child pedestrian injuries [58].</td>
</tr>
<tr>
<td>Property design that separates areas where vehicles are driven from child walking and play areas reduces the risk of child driveway run over injuries [59-61].</td>
<td>Half of driveway run over injuries could be prevented if driveways were separated with fencing [61]. Separating pedestrian pathway from driveways reduces the risk of child driveway run over injury [62].</td>
</tr>
<tr>
<td>Enforcement</td>
<td></td>
</tr>
<tr>
<td>Legislation reducing lower speed limits reduces pedestrian injury, changes driver behaviour and is cost effective [65]. Enforcement of legislation reducing vehicle speeds in residential areas.</td>
<td>A pedestrian-motor vehicle collision at a motor vehicle speed of 30 km/ph results in a 90 percent chance of pedestrian survival, whereas the same collision at a motor vehicle speed of 45 km/ph results in only a 50 percent chance of pedestrian survival [71]. Enforcement of legislation or policy requiring lower speed limits reduces pedestrian injury and changes driver behaviour [74]. OECD countries with the lowest rates of child pedestrian injury have legislation that assumes driver responsibility in collisions involving child pedestrians [70]. Reduced speed zones of 20mph (32 km/ph) in the UK decreased vehicle speed by an average nine mph (14 km/ph), and reduced the number of fatal child pedestrian collisions by 70 percent [72, 73]. Various communities around New Zealand are also trialling reduced speed zones around schools and in residential neighbourhoods [66,67,68,69]. The World Health Organisation recommends 30 km/ph speed limits around schools [71]. Legislation is most effective when well enforced and when coupled with educational interventions [36,74].</td>
</tr>
<tr>
<td>Pedestrian skills training improves pedestrian safety behaviour including crossing skills [75-77].</td>
<td>Risk of child pedestrian injury is significantly reduced when children are accompanied by adults on the school-home journey [78]. Walksafe interventions including adult accompaniment of children walking to school are an opportunity for pedestrian skills training, and have resulted in reduced pedestrian-motor vehicle collisions [80-82]. New Zealand walking school buses show promise in preventing child injury, but exhibit marked inequities in their geographical distribution [79]. Pedestrian safety education initiatives need to be regularly repeated to retain knowledge and behaviour change [76,82].</td>
</tr>
<tr>
<td>Community interventions involving community development approaches, and including advocacy and programmes to improve awareness, reduce child pedestrian injury [77,83].</td>
<td>Initiatives involving community coalitions which support increased community ownership of injury prevention interventions result in pedestrian-related injury reductions of 45-54 percent [83]. Interventions which focus on raising community awareness may support to prevent low speed run over injury [64,86]. The Safekids Aotearoa driveway run over awareness campaign had significant reach into Māori and Pacific communities to increase awareness of the risk of driveway run overs. Linked community-led initiatives showed promise in raising awareness of vehicle blind zones and the need for child supervision, and reducing child driveway run over injury [84,85].</td>
</tr>
</tbody>
</table>

Further information and resources

For further information and resources on reducing child passenger injuries go to the Safekids website www.safekids.nz
Cyclist safety

Cycling provides is an important source of exercise, transportation, recreation and independence for children. Learning to ride a bike is an important part of play, development and fitness. There is evidence that child cyclist injuries and fatalities could be reduced if the following strategies were implemented.

Relevant legislation and standards

Helmet legislation

The New Zealand helmet law came into effect from 1 January 1994 requiring all cyclists to wear a standards approved cycle helmet for all on-road cycling. The Land Transport Road User Rule (2004) established rules under which all traffic, including child cyclists, must adhere in order to use the road and footpaths (Land Transport (Road User) Rule 2004, 11.8 Safety helmets for cyclists).

See the standard for buying a helmet at: http://www.nzta.govt.nz/resources/roadcode/cyclist-code/about-equipment/cycle-helmets.html

Bicycle standard

This ensures that bicycles supplied in the market meet certain minimum standards by specifying requirements for the bicycle as a whole and the components and assembly which the overall safety of the bike depends. (Product Safety Standards (Pedal Bicycles) Regulations 2000 (as amended in 2003)).

Cyclist safety and assessment of evidence at a glance

Good practice to improve cyclist safety includes:

- Cycle helmets – very good
- Increased visibility through visibility aids such as bio-motion detectors (that detect cyclists and alert cars that a cyclist is present, covering the blind spots in cars) – promising
- Cycle ways and pathways – promising
- Area wide traffic calming – promising
- Training children to be safe on the roads – precaution, mixed evidence
Cyclist safety good practice evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering
Use of bicycle helmets reduces the incidence and severity of head injury, and is cost effective [88-90]
Use of cycle helmets results in an 85 percent reduction in the risk of a head injury, an 88 percent reduction in the risk of brain injury, at least a 75 percent reduction in the risk of severe brain injury and a 65 percent reduction in risk of injury to the upper and mid facial regions [88].
Use of cycle helmets provides a 69 percent reduction in the risk of injury in collisions with motor vehicles and a 68 percent reduction in the risk of injury regarding all other collisions [88].
Children not wearing helmets when involved in a cycling crash were 2.7 times more likely to incur an upper head injury, and 7.3 times more likely to lose consciousness as a result of the crash compared with children who had been wearing helmets [91].
Use of cycle helmets is cost effective - a New Zealand study estimated a cost saving of $2.61 for every $1 spent on helmets for children aged 5-12 years [89].</td>
<td>
Area-wide engineering and traffic calming solutions reduce child cyclist injury, Engineering solutions are more effective when coupled with education and enforcement activities, targeted to areas of high child traffic around schools, and particularly where such areas adjoin, or are close to, main roads or rural highways and when they reflect child developmental capabilities and limitations.</td>
</tr>
<tr>
<td>Enforcement
Enforcing the use of cycle helmets
Bicycle helmet legislation increases use, and reduces injury [93,94].</td>
<td>Mandatory bicycle helmet laws introduced in New Zealand in 1994 resulted in large increases in helmet use, and reductions in the number of head and scalp injuries [57] [95].</td>
</tr>
<tr>
<td>Education
Community-based interventions regarding helmet wearing lead to increased use of helmets [31,42,96,97].</td>
<td>Children who received either a community-based intervention or an educational intervention including a free helmet were four times more likely to wear a helmet than children not receiving an intervention. Children who received interventions in schools were nearly twice as likely to wear helmets. Children receiving education-only interventions were 40 percent more likely to wear a helmet [96]. Interventions provided to younger children (aged less than 9-12 years) are more effective than those provided to older children [31,96]. Broad interventions that enhance child and parental awareness of the importance of helmets, reduce resistance to use and decrease the cost of helmet purchase may be most effective [42]. Children are more than twice as likely to wear a helmet if accompanied by another child who is wearing a helmet. Children are four times as likely to wear a helmet if accompanied by an adult, and nine times as likely if the adult is wearing a helmet [98].</td>
</tr>
<tr>
<td>Cycling skills training shows promise but use with care. Increasing knowledge and observed riding skills, though may also encourage overconfidence, and risk taking behaviour [31, 99-101].</td>
<td>Comprehensive cycle skills training programmes incorporate helmet safety, knowledge about road rules and safety and include on-bike skills [102]. However, some children may become overconfident of their ability to cope in traffic following training [100]. Safekids Aotearoa recommends careful supervision of boys aged 11-14 years alongside skills training, due to the increased risk of injury in this group [103].</td>
</tr>
</tbody>
</table>

Further information and resources

For further information and resources on reducing child passenger injuries go to the Safekids website www.safekids.nz
Summary

- Since 2007, suffocation has overtaken motor vehicle traffic crashes as the leading cause of fatal injury death among children. Around 92 children each year will either die or be hospitalised from unintentional suffocation, which is around 10 in every 100,000 children.

- Death rates from suffocation have increased between 2001 and 2010, which is probably related to an increasing recognition of suffocation as a contributing factor in many cases of Sudden Infant Death in Infancy (SUDI) among children under 12 months old.

- Suffocation almost exclusively affects very young children under the age of four, and particularly those under one year old. Nearly half of suffocation injuries were caused by choking on food or other objects. Inhaling gastric contents was also a leading cause of suffocation in very young children, and suffocation and strangulation in the bed is also a significant cause of injury.

- Male, Māori, and Pacific Island children had disproportionately high rates of suffocation injury.

- We could reduce the burden of child injury from suffocation in New Zealand by:
 - Designing, constructing and using materials for cots, folding cots, and high chairs that minimise entrapment — there is some evidence
 - Ensuring toys for < 3 year olds do not have small parts that can be pulled off or break off - there is some evidence
 - Using Wahakura, Pepi pods (specially designed baby beds for safe sleeping) — the evidence may be promising
 - Health promotion messages may be promising - but the messages need further testing.
The big picture

Since 2007, suffocation has overtaken motor vehicle traffic crashes as the leading cause of unintentional injury death among children aged 0 to 14. Between 2006 and 2010, suffocation was the main cause of over one-third (39%) of child deaths from unintentional injury (Table 2). During this time period, around 33 children died each year from unintentional suffocation. Although suffocation is not one of the leading causes of non-fatal injury (Table 3), around 60 children each year between 2008 and 2012 were hospitalised with non-fatal injuries from unintentional suffocation.

Taken together, this means that around 93 children each year will either die or be hospitalised from unintentional suffocation. This is around 10 in every 100,000 children.

Changes over time

Death rates from suffocation have increased between 2001 and 2010, from around 2 in every 100,000 children in 2001 to nearly 4 in 2010 (Figure 16). This may be related to an increasing tendency for coroners and pathologists to recognise suffocation as a contributing factor in many cases of Sudden Infant Death in Infancy (SUDI) among children under 12 months old.

FIGURE 16: FATAL AND NON-FATAL INJURIES FROM SUFFOCATION IN CHILDREN AGED 0-14 OVER TIME, 2001 TO 2012.

46 r=0.87 (a strong increase).
Leading causes of suffocation, strangulation and choking

Suffocation, strangulation and choking almost exclusively affects very young children under the age of four, and particularly those under one year old. Between 2006 and 2010, 95 per cent of all fatalities from unintentional suffocation, strangulation and choking incidents affected children under the age of five, while 87 per cent of all non-fatal suffocation injuries affected children in this age group (Figure 2).

<table>
<thead>
<tr>
<th>Leading causes of suffocation, strangulation and choking</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cause of Injury</th>
<th>2006 to 2010 New Zealand Fatalities, 0-14 year olds, all NZ</th>
<th>2008 2012 New Zealand Public Hospital Injury Discharges, 0-14 year olds, all NZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths (2006-2010) Number of Deaths</td>
<td>Rate / 100,000 people</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Choking on food</td>
<td>8</td>
<td>4.9</td>
</tr>
<tr>
<td>Choking on other objects</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Inhalation of gastric contents</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Other specified and unspecified</td>
<td>11</td>
<td>6.7</td>
</tr>
<tr>
<td>Suffocation and strangulation in bed</td>
<td>2</td>
<td>1.2</td>
</tr>
<tr>
<td>Other hanging and strangulation</td>
<td>140</td>
<td>85.4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>164</td>
<td>100</td>
</tr>
</tbody>
</table>

Distribution by gender and ethnicity

The differences between the rates for girls and boys is not statistically significant. Māori and Pacific Island children had higher rates of non-fatal injury from suffocation than European/Other and Asian children (Figure 17). The same is true of fatal injuries.

FIGURE 17: FATAL (2006-2010) AND NON-FATAL (2008-2012) INJURIES FROM SUCCOFICATION IN CHILDREN AGED 0 TO 14 BY ETHNIC GROUP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Rate per 100,000</td>
</tr>
<tr>
<td>European/Other</td>
<td>46</td>
<td>1.4</td>
</tr>
<tr>
<td>Māori</td>
<td>100</td>
<td>9.1</td>
</tr>
<tr>
<td>Pacific Island</td>
<td>14</td>
<td>2.4</td>
</tr>
<tr>
<td>Asian</td>
<td>4</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Relevant legislation and standards

Household cots

Choking (toys)

Prevention

Choking, suffocation and strangulation injuries are often less common than other injuries but tend to be fatal. Suffocation can be caused by children being trapped in confined spaces or plastic bags. Strangulation places pressure on the trachea and can be caused by children becoming caught or entangled in window blind cords, clothing draw strings, cot bars etc. Choking is when the airway becomes blocked and can be caused by round or cylinder shaped foods such as lollies, grapes, nuts or non-food items such as coins or buttons.

Choking, suffocation and strangulation prevention and assessment of evidence at a glance

Good practices for reducing choking, suffocation and strangulation injuries and deaths include:

- Design, construction, materials for cots, folding cots, high chairs to minimise entrapment and to have baby’s head in safe position for breathing – some evidence
- Toys for < 3 year olds not to have small parts that can be pulled off or break off - some evidence
- Wahakura, Pepi pods (specially designed baby beds for safe sleeping) – promising
- Health promotion messages – may be promising but the messages need testing and consistency.

Further information and resources

For further information and resources on reducing choking, suffocation and strangulation go to:

- The Safekids website – www.safekids.nz
- Whakawhetu http://www.whakawhetu.co.nz/ – a national kaupapa Māori SUDI prevention organisation providing policy advice, information, resources, training and education to the health sector and Māori communities.

48 The differences between the rates for boys and girls was not statistically significant.
Choking, suffocation and strangulation good practice evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforcement</td>
<td>Legislation requiring product banning, regulation or modification permanently removes a large portion of the choking/strangulation/suffocation risk [197,200].</td>
</tr>
<tr>
<td></td>
<td>Product banning or modification is more effective in reducing risk than supervision [197].</td>
</tr>
<tr>
<td></td>
<td>Legislation is most effective when well enforced and when combined with educational interventions [36].</td>
</tr>
<tr>
<td></td>
<td>In New Zealand product banning/regulation has been implemented for small high-powered magnets [198], recommended for window blind cords in New Zealand [199], and has been recommended for drawstrings on children’s clothing, latex balloons and inedible items in food products overseas [3,197].</td>
</tr>
<tr>
<td>Education</td>
<td>Legislation/standard requiring food and products to have warning labels with an explanation of the specific hazard may reduce injury [197,200].</td>
</tr>
<tr>
<td></td>
<td>Warning labels with a specific hazard explanation are more effective than non-specific labels [197,199].</td>
</tr>
<tr>
<td></td>
<td>Home/community-based prevention interventions may reduce injury, however there is a lack of evidence available in this area [199,206].</td>
</tr>
<tr>
<td></td>
<td>Health promotion messages safe sleep, every sleep, every place. Although consistent with evidence, the efficacy of the message is not evaluated.</td>
</tr>
<tr>
<td></td>
<td>Unintentional suffocation health promotion messages through education, professional advice and media support.</td>
</tr>
<tr>
<td></td>
<td>The Wahakura and Pepi-pod are baby beds that show promise in preventing cot associated entrapment and strangulation [206-208].</td>
</tr>
<tr>
<td></td>
<td>Based on NZ research on causes, but efficacy of message not evaluated. Report outlines safe sleep spaces [224]</td>
</tr>
<tr>
<td></td>
<td>Based on NZ research on causes, but efficacy of message not evaluated. In Austria a free safety pack is provided to families with children under six years of age. Regional initiatives such as ‘Reach Me’ offer safety packs [224].</td>
</tr>
</tbody>
</table>
42 Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies
5 Falls

Summary

• Falls were the leading cause of non-fatal unintentional injuries in children aged 0 to 14 between 2008 and 2012, causing nearly half of all hospitalisations during this period. Each year, around 3,729 children are hospitalised or die from falls, which is 412 in every 100,000 children. Non-fatal injuries from falls have decreased between 2001 and 2012.

• Among children, those aged 5 to 9 are at greatest risk of fall-related injuries, though the age group most at risk depends on the main cause of the fall and the location where the fall took place. Around 40 per cent of falls where a location was specified took place at home, 29 per cent at school, and 9 per cent at a sport or athletic ground. Children aged 0 to 4 were most at risk of falls in the home, while those aged 5 to 9 were at greater risk of falls at school, and those aged 10 to 14 of falls at sport or athletic grounds.

• Falls involving playground equipment accounted for around one-third of injuries, and were most common among those children aged 5 to 9, and in a school or public playground setting. Injuries from slipping, tripping, or stumbling on the same level account for around 10 per cent of all injuries and occurred at equal rates across all age groups, while falls involving ice-skates, skis, roller-skates, and skateboards accounted for 9 per cent of injuries and were most common among older children.

• Male and Māori children were more likely to be hospitalised from falls than other groups.

We could reduce the burden of child injury from falls in New Zealand through:

• Playground equipment height and surface standards and compliance checks – very good evidence

• Reducing exposure to falls from within buildings and homes e.g. through stair guards and window latches – good evidence

• Encouraging the use of personal protective equipment such as a helmet for use with skateboards, skates, skiing or scooters – the evidence is promising

• Reducing the use of baby walkers – good evidence

• Reducing the opportunities to fall from cots, beds and bunks – some evidence supports this approach.
The big picture

Falls were the leading cause of non-fatal unintentional injuries in children aged 0 to 14 between 2008 and 2012, causing nearly half of all hospitalisations during this period (Table 2). Every year between 2008 and 2012, 3,729 children are hospitalised or die from falls, which is around 412 in every 100,000 children. Non-fatal injuries from falls have decreased from around 552 hospitalisations per 100,000 children in 2001 to 405 in 2012 (Figure 5).49

Leading causes by age group

Children aged 5 to 9 had the highest rates of non-fatal injuries from falls between 2008 and 2012, with an injury rate around 1.5 times that of 0–4-year-olds and 10–14-year-olds (Figure 18).50 However, the age group most at risk depends on the main cause of the fall (Figure 18) and the location where the fall took place (Figure 19). Of those cases where the location of the fall was specified, 40 per cent took place within the home, with around 9 per cent of all home-based falls taking place in an outdoor area such as a garden or tennis court. Falls at home were most common among children aged 0 to 4. Over one-quarter of falls (29%) took place at school, and was most common among children aged 5 to 9. More than one in ten falls occurred at sport or athletic grounds, and were most common among children aged 10 to 14 and at outdoor sporting grounds (Figure 18).

FIGURE 18: NON-FATAL INJURY FROM FALLS IN CHILDREN AGED 0–14 BY LOCATION AND AGE GROUP, 2008-2012.

49 Note that falls from cycles do not come under the falls admission data.
50 95% confidence intervals for children aged 5-9 did not overlap with those of other age groups: whereas the lower bound for children aged 5-9 was 510.2 hospitalisations from falls per 100,000, the highest upper bound for other ages was 378.3 per 100,000.
Around one-third of all falls among children involved playground equipment. Falls of this kind were especially common among 5–9-year-olds, who experienced non-fatal injuries from falls at three times the rate of 0–4-year-olds, and four times the rate of 10–14-year-olds. Unsurprisingly, more than half of those falls involving playground equipment where a location was specified took place at school (53%).

Incidents of slipping, tripping, or stumbling on the same level account for around 10 per cent of all fall-related non-fatal injuries, which occur at roughly equal rates across all age groups.

Falls involving ice-skates, skis, roller-skates, and skateboards are the third-leading cause of falls in children, and are the leading cause of falls among 10–14-year-olds. In general, the older the child, the more at risk they are of being hospitalised from a fall involving ice-skates, skis, roller-skates, and skateboards. (Figure 19, see Appendix B for further detail).

Distribution by gender and ethnicity

Male children aged 0 to 14 were hospitalised from falls at nearly 1.5 times the rate of females between 2008 and 2012, with 482 out of every 100,000 male children hospitalised compared with 341 females.\(^5\) Māori children are also disproportionately likely to be hospitalised from non-fatal fall injuries, with around twice as many Māori children as Asian hospitalised between 2008 and 2012, with 427 out of every 100,000 Māori children hospitalised compared with 215 Asian children. Rates of injury among European/other and Pacific Island children fall between those of Māori and Asian children, at 330 and 357 children per 100,000, respectively.

FIGURE 19: NON-FATAL INJURY FROM FALLS IN CHILDREN AGED 0–14 BY LEADING CAUSE AND AGE GROUP, 2008–2012.

![Figure 19: Non-fatal injury from falls in children aged 0–14 by leading cause and age group, 2008–2012.](image)

\(^5\) 95% confidence intervals did not overlap, with the upper bound for girls at 349.9 hospitalisations from falls per 100,000 and the lower bound for boys at 459.3.
Design and standards

There is currently no voluntary New Zealand Trampoline Standard. Safekids Aotearoa believes an updated mandatory standard is warranted.

Playground standards - The standard for playgrounds is NZS 5828:2004 Playground equipment and surfacing. (Voluntary)

Bikes, scooters and skates -

All new pedal bicycles sold in New Zealand with a wheel base of 640mm or greater must meet the safety standard AS/NZS 1927. Children’s tricycles are considered toys and are not covered by the safety standard applying to bicycles. They should meet the toy safety standard AS/NZS ISO 8124.1.

There are a number of voluntary standards that the manufacturer may have followed for skateboards and scooters. Retailers should be asked if a skateboard or scooter complies with any safety standards before they are purchased. Ref: http://www.consumeraffairs.govt.nz/news/word-of-advice/2013/keeping-children-safe-on-wheels/?searchterm=skate*

Prevention

While childhood falls are often viewed as part of growing up, they can cause serious injury and in some cases are fatal.

Prevention strategies to reduce child fall related injuries and fatalities need to consider the age of the child and the setting in which they live and play.

Falls prevention and assessment of evidence at a glance

- Playground equipment height and surface standards and compliance – very good evidence
- Reducing exposure to falls from within buildings and homes e.g. through stair guards – good evidence
- Personal protective equipment such as a helmet for use with skateboards, skates, skiing or scooters – the evidence is promising
- Reduce use of baby walkers – good evidence
- Reduce the opportunity to fall from cots, beds and bunks – some evidence supports this approach.
Falls prevention evidence

<table>
<thead>
<tr>
<th>Engineering</th>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window guards prevent falls [55,179,180].</td>
<td>Window guards reduce deaths from window falls by 35-50 percent [181]. Regulations requiring window safety mechanisms on rental housing are an effective approach for areas of socio-economic deprivation [179]. Annual inspection and enforcement increases compliance with window guard legislation [181].</td>
<td></td>
</tr>
<tr>
<td>Stair gates may prevent falls down stairs in young children, and are recommended [55].</td>
<td>Inequalities in rates of use may be partially reduced when stair gates are both supplied and installed, however further research on additional barriers is needed [171,183].</td>
<td></td>
</tr>
<tr>
<td>Helmets may reduce the risk of head injury from horse riding falls [55,184,187].</td>
<td>In the United Kingdom, helmet use is mandated for children aged 14 years and younger when riding a horse on the road [189].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enforcement</th>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legislation of playground height and surfacing materials reduces risk of injury to children.</td>
<td>Surfacing materials such as sand or wood chips to a depth of 300mm are recommended to prevent playground equipment-related injury. The risk of any playground-related fall injury is two times greater if falling onto a hard surface, compared with a soft surface [192]. Optimal equipment height of playground equipment to reduce risk of head injury is 1.5m [179,190,191].</td>
<td></td>
</tr>
<tr>
<td>Legislation banning baby walkers removes a larger portion of existing risk than parental supervision [179,193].</td>
<td>Community-based initiatives to enhance awareness of baby walker hazards, and support baby walker disposal may contribute to a reduction in baby walker associated injury, and could support legislation banning baby walkers [194]. Primary care interventions to pregnant women can reduce possession and use of baby walkers [195].</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education</th>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiatives encouraging fall prevention awareness may reduce fall hazards, and support actions to prevent falls but not all interventions or education are effective [31,170,179]. Initiatives encouraging the use of fall prevention safety devices increase device use.</td>
<td>A multi-faceted school based health promotion intervention, incorporating playground hazard assessment and remediation, was more effective in reducing playground hazards than providing information alone [196]. Home safety interventions are effective in increasing the proportion of families with appropriately fitted stair gates. Interventions that provide fitted stair gates in addition to education have a greater effect on stair gate use [170]. The Waitakere Community Injury Prevention programme resulted in significant increases in ownership of stair gates [40]. Home safety interventions providing free, low-cost or discounted safety equipment are variable in efficacy. Some are more effective in supporting injury prevention in the home than interventions not doing so [170]. For trampoline safety Safekids recommends active supervision, one child at a time, following trampoline manufacturer instructions, positioning trampolines on even ground, with minimum surrounding clearance of 2 metres and upward clearance of 7.3 metres, and regular inspection and maintenance [226].</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Drowning is the third-leading cause of death from unintentional injury in children aged 0 to 14. Around 37 children die or are hospitalised from drowning each year, which is around 4 in every 100,000 children. There has been a slight decline in the rate of child injury from drowning since 2001.

- Drowning fatalities and hospitalisations in children are highest among those aged 0 to 4, with the rate of injury in this age group around five times higher than in children aged 5 to 9, and more than six times higher than in children aged 10 to 14.

- Male children were nearly twice as likely to be injured from unintentional drowning than females, and rates of drowning injury among Māori children were three times as high as those of Asian children, and nearly twice as high as European/other and Pacific Island children.

- We could reduce the burden of child injury from drowning in New Zealand by
 - Personal flotation devices in boats – good evidence
 - Child-proof perimeter or isolation fencing for domestic swimming pools (including spas) – very good evidence
 - Swimming training – fair evidence
 - Supervision – quite good evidence
The big picture
Drowning is the third-leading cause of death from unintentional injury in children aged 0 to 14, with around 8 child deaths from drowning each year between 2006 and 2010. Although drowning is not a leading cause of non-fatal unintentional injury among children, a further 28 children were hospitalised from drowning-related injuries each year between 2008 and 2012.

Changes over time
There has been a decline in the rate of child injury from drowning since 2001, with fatalities declining from 1.7 per 100,000 children in 2001 to 0.9 in 2010, and hospitalisations declining from 5 in every 100,000 children in 2001 to 3.4 in 2012 (Figure 20). \(^5\)

Taken together, this means that around 36 children die or are hospitalised from drowning each year, which is around 4 in every 100,000.

\(^5\) r=-0.77 for fatalities; r=-0.64 for hospitalisations. (Both are strong linear relationships).
Drowning fatalities and hospitalisations in children are highest among those aged 0 to 4, with the rate of injury in this age group around five times higher than in children aged 5 to 9, and more than six times higher than in children aged 10 to 14 (Figure 21).53 Pre-schoolers are particularly at risk of drowning in “immersion incidents”, in which victims have no intention of entering the water for recreational purposes (e.g., victims are accidentally immersed in rivers, baths, or buckets). Around one-quarter of immersion fatalities involve pre-schoolers.54

Male children aged 0 to 14 were nearly twice as likely to be injured from unintentional drowning as females. While there are around 3 deaths or hospitalisations from drowning in every 100,000 female children, there are more than 5 deaths or hospitalisations in every 100,000 male children.55 Māori children are also over-represented in drowning injuries, with hospitalisation rates three times as high as those of Asian children, and nearly twice as high as European/other and Pacific Island children between 2008 and 2012.

53 95% confidence intervals for both fatal and non-fatal drowning injuries for children aged 0 to 4 did not overlap with the CIs of other age groups, and were therefore significantly higher at a 0.05 level.
55 95% confidence intervals for both fatal and non-fatal drowning injuries for male children did not overlap with the CIs of females, and were therefore significantly higher at a 0.05 level.
Relevant legislation and standards

The Fencing of Swimming Pool Act

Life jacket standard

Boat operators must carry a correctly sized, serviceable lifejacket for each person on board a pleasure boat in New Zealand. This is a legal requirement and applies to all boats. Children should wear lifejackets at all time in boats under 6 metres. Lifejackets must meet the New Zealand Standard (NZS 5823:1999, 2001 or 2005). Also check council by laws.

Prevention

Childhood drowning tends to be silent and fast. The locations in which children drown reflect their developmental activity and the environments in which they spend time. The speed at which children drown suggests that the active supervision of children around water is an important strategy.

Isolation fencing reduces the risk of young children drowning in domestic swimming pools and spa pools [12].

At-risk groups, include Māori, pre-schoolers, and males participating in recreational activities.

Drowning prevention and assessment of evidence at a glance

- Personal flotation devices in boats - good
- Child-proof perimeter or isolation fencing for domestic swimming pools (including spas) – very good
- Swimming training - fair
- Supervision – quite good

Drowning prevention evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of personal flotation devices (PFD) may prevent drowning [104,105]</td>
<td>Use of a PFD doubles the chance of surviving a boating incident [105]. Use of a PFD may prevent half of all boating related deaths that would otherwise occur [104].</td>
</tr>
<tr>
<td>Provision of safe swimming places and elimination of common hazards prevent injury [55,107,108]</td>
<td>Actions recommended to prevent drowning include: installing four-sided isolation fencing around paddling and permanent pools, always latching pool gates, safely storing buckets, drums and other containers to prevent rainwater collection, emptying baths, pooling pools and buckets when not in use, shutting bathroom and toilet doors and covering septic and water tank openings [55,110,111]. Effective signage about safe swimming should reinforce previous awareness and education action [106,107]. Drain covers and special filter equipment can prevent entrapment and hair entanglement in pools [110].</td>
</tr>
<tr>
<td>Legislation requiring fencing with secure, self-latching gates for all pools (old and new public, semi-public and private) prevents drowning when well enforced [55,112,113]</td>
<td>Four-sided fencing that completely isolates a pool can prevent more than 50 percent of pool-related drowning in young children [110]. The New Zealand Fencing of Swimming Pools Act (1987) [114] reduced annual drowning among children aged less than five years in home swimming pools from from 12 to two per year [111]. Australian research shows that enforcement is essential for legislation to be effective [116,117]. Government inspections increased compliance with pool fencing laws from approximately 50 percent to 97 percent [118]. A 2006 New Zealand survey of enforcement of the Fencing of Swimming Pools Act (1987) found that 63 percent of 49 responding local authorities had a re-inspection programme for domestic pools - an increase from 28 percent in 1997. The Building Act 2004 requires local authorities to undertake regulatory building control work, and may have supported an increase in enforcement and compliance with the Fencing of Swimming Pools Act (1987) [115].</td>
</tr>
<tr>
<td>Legislation requiring child PFD use is recommended [55] and may increase use [119].</td>
<td>Use of PFD by children increased from 52 percent to 83 percent 13-16 months after a regulation requiring all persons on board small powered recreational vessels to wear a PFD was enacted in Victoria, Australia [120]. Even with varying enforcement, child PFD use prevalence is 89-95 percent in the United States, which has 48 states with PFD legislation for children [119].</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Appropriately staffed, qualified, trained and equipped lifeguards appear to be part of an effective prevention strategy [55,108,121,122].</td>
<td>Lifeguards offer multiple layers of prevention that appear to be effective in water safety and drowning prevention including: role modeling, water safety awareness and education, monitoring of the aquatic environment for hazard identification and avoidance, enforcement of water safety rules and regulations, rescue and resuscitation [121].</td>
</tr>
<tr>
<td>Education</td>
<td>Community-based interventions regarding water safety, including the need for supervision and use of PFD, may increase water safety practices [113,121,123].</td>
</tr>
<tr>
<td>Water safety and skills training improve swimming performance [113], and may prevent drowning in young children [106,121].</td>
<td>A water safety awareness and education campaign in Victoria, Australia may have contributed to a 56 percent reduction in the drowning rate since 1998 [123]. Community interventions including PFD loan schemes may increase child PFD use, and reduce drowning [113, 124, 125]. Supervision is an important component of water safety. Supervision is lacking in the majority of child drownings under the age of five years [126,127]. Observational research at 18 New Zealand beaches found that more than a quarter of caregivers failed to provide adequate supervision for children aged less than five years at the beach, and nearly half of caregivers failed to provide adequate supervision for children aged five-nine years, highlighting the need for actions.</td>
</tr>
<tr>
<td>Swimming lessons for toddlers are an opportunity to reiterate to adult caregivers the importance of supervision, and address misconceptions, such as overestimating the protective role of lessons [129,130].</td>
<td>Swimming instruction for children aged one to four years may reduce drowning [106,121]. Swimming instruction must be considered as only one aspect of a multilayered approach to drowning prevention that also includes effective barriers, appropriate adult supervision and resuscitation training [110,121,126]. Swimming skills and water safety programmes have positive impacts for vulnerable population groups. WaterSafe Auckland’s Pools2Schools initiative provides schools in areas of high socioeconomic deprivation with a portable pool, and instructor training to teach children aquatic confidence, how to swim, survival skills and critical thinking. Children involved in this initiative have learnt water safety and survival skills, and have an increased awareness of decision making in aquatic environments [132]. Evaluation of an Auckland water safety education programme for refugees and new settlers aged 5-18 years showed an improvement in swimming skills, and understanding of key water safety messages compared with skills and understanding prior to the programme, although it is unclear if this has an impact on drowning prevention [133].</td>
</tr>
</tbody>
</table>
Inanimate mechanical forces (crushing, cutting, piercing, jamming injuries from objects)

Summary

- Inanimate mechanical force (e.g., being struck by, cut, or otherwise injured by an object) is the second-leading cause of non-fatal unintentional injury among children. Each year between 2008 and 2012, around 1,493 children were hospitalised with non-fatal inanimate mechanical force injuries, which is 165 in every 100,000 children. The rate of child hospitalisation from non-fatal inanimate mechanical forces has declined since 2001.

- Preschool-aged children have the highest rates of inanimate mechanical force injury, and are especially prone to being caught, crushed, jammed, or pinched between objects. Older children were more often injured from contact with sharp glass or being struck by or against objects (e.g. sports equipment).

- Boys were hospitalised from inanimate mechanical force injuries at nearly 1.5 times the rate of females.

- Pacific Island and Māori children were hospitalised from inanimate mechanical force injuries at around twice the rate of other ethnic groups. Pacific Island children had especially high rates of injury from being caught, crushed, jammed, or pinched between objects.

- To help prevent inanimate mechanical force injuries in children:
 - Safety glass – good evidence
 - Home visiting programmes – promising evidence
The big picture

Inanimate mechanical force injuries are those incurred through being struck by, cut, or otherwise injured by an object. This includes being caught, crushed, jammed, or pinched between objects. It can include sports injuries, jammed fingers, and injuries from sharp objects such as knives, scissors, or glass.

Inanimate mechanical force is the second-leading cause of non-fatal unintentional injury among children, causing around 1,493 child hospitalisations each year between 2008 and 2012. This is around 165 in every 100,000 children.

FIGURE 22: Non-fatal injuries from inanimate and animate mechanical forces in children aged 0–14 over time, 2001 to 2012.

Changes over time

There has been a decline in the rate of non-fatal injury from inanimate mechanical forces among children between 2001 and 2012, with around 220 in every 100,000 children hospitalised in 2001 and 162 in 2012 (Figure 22)56.

56 $r = -0.93$ (a strong linear relationship).
Leading cause by age group

Children aged four years and under were hospitalised with mechanical force injuries at around 1.5 times the rate of older children between 2008 and 2012 (Figure 23).

Nearly half (45%) of injuries in children aged four and under were caused by being caught, crushed, jammed, or pinched between objects. This was also the leading cause of inanimate mechanical force injury in 5–9-year-olds, causing around one-third of inanimate mechanical force injuries in this age group. In contrast, the leading cause of inanimate mechanical force injury in 10–14-year-olds was contact with sharp glass, followed by being struck against objects, especially sports equipment (Figure 23, see also Appendix B).

Distribution by gender and ethnicity

Male children were hospitalised from inanimate mechanical force injuries at nearly 1.5 times the rate of females between 2008 and 2012, with around 196 in every 100,000 boys hospitalised and 134 in every 100,000 girls (Figure 24).

Pacific island and Māori children were hospitalised from inanimate mechanical force injuries at around twice the rate of Asian and European/other children (Figure 25). Pacific island children had especially high rates of injury from being caught, crushed, jammed, or pinched between objects.

FIGURE 25: NON-FATAL INJURY FROM INANIMATE MECHANICAL FORCES IN CHILDREN AGED 0–14 BY LEADING CAUSE AND ETHNICITY, 2008-2012.

Design and standards

The Building Code has a clause (Clause F2 Hazardous Building Materials) that outlines where and how safety glass must be used in new buildings. The New Zealand Standard 4223:1999 also gives guidance about minimum requirements for glazing in buildings where people risk injury by falling onto glass.
Prevention

Severe and fatal injuries happen when children fall through glass windows or doors that are not fitted with safety glass. Children also receive severe foot or leg injuries after being run over by lawn mowers. Injury prevention opportunities include ensuring the effective removal of broken glass from public spaces; encouraging children to wear footwear; the increased use of safety glass in windows and doors; increased awareness of the dangers of equipment such as lawn mowers and kitchen equipment; and keeping fences and playgrounds in good repair.

Inanimate forces evidence at a glance
- Safety glass – good
- Home visiting programmes - promising

Inanimate mechanical forces evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Safety glass</td>
</tr>
<tr>
<td>Safety glass</td>
<td>Safety glass is glass that has been treated so that it will be unlikely to cause harm when it is cracked or broken. Safety glass can be used in areas where falls are possible, for example, ranch sliders, shower enclosures, or around stairs. Government building rules require safety glass is used in places where an injury might occur should the glass be broken [248].</td>
</tr>
<tr>
<td>Education</td>
<td>Home visiting programmes</td>
</tr>
<tr>
<td>Injuries are most likely to occur when parents are unable to predict a child’s ability to perform tasks such as climbing furniture. Parenting programmes are effective in improving home safety, particularly amongst families considered at risk [249-251].</td>
<td></td>
</tr>
</tbody>
</table>
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies
Summary

• Animate mechanical force (e.g., being bitten, struck, or otherwise injured by another person or an animal) is the third-leading cause of non-fatal unintentional injury among children. Each year between 2008 and 2012, around 413 children were hospitalised with non-fatal animate mechanical force injuries, which is 46 in every 100,000 children.

• Children aged 10 to 14 had higher rates of hospitalisation from animate mechanical force injury than younger children between 2008 and 2012. In particular, older children were more prone to injury from accidental contact (e.g. bumping into or being hit, struck, twisted, or bitten) with another person, which perhaps reflects older children’s higher participation in contact sports. In contrast, the leading cause of injury from animate mechanical forces in children aged 9 and below was contact with a dog.

• Boys were hospitalised from inanimate mechanical force injuries at nearly twice the rate of females, and were especially prone to injury from contact with another person.

• Māori children had the highest rates of non-fatal injury from animate mechanical forces, followed by Pacific Island children. Māori children were especially prone to being injured from contact with a dog.

• To help prevent animate mechanical force injuries in children:
 - Educate families on neutering male dogs and avoiding choosing unsafe breeds as pets – promising
 - Educate children on how to interact with unfamiliar and pet dogs (although the evidence is mixed)
The big picture

Animate mechanical force injuries are those incurred through being struck, bitten, or otherwise injured by an animal, such as a human, dog, or insect. Animate mechanical force is the fourth-leading cause of non-fatal unintentional injury among children, causing around 413 child hospitalisations each year between 2008 and 2012. This is about 46 in every 100,000 children.

Changes over time

There has not been a steady decline in injuries from animate mechanical forces between 2001 and 2012, with around 52 children out of every 100,000 hospitalised from animate mechanical force injuries in 2001, and 46 in 2012 (Figure 22).

Leading cause by age group

Hospitalisation from animate mechanical forces among children aged 10 to 14 years was around 1.5 times the rate for children aged 9 and under. Most of these injuries in this older age group were from being unintentionally hit, struck, kicked, twisted, bitten, scratched or bumped by another person. This may be related to greater participation in contact sports in this age group.

In contrast, the leading cause of injury from animate mechanical forces in children aged 9 and under was contact with a dog, which accounted for 43 per cent of hospitalisations from animate mechanical forces in children aged 0 to 4, and 35 per cent in children aged 5 to 9. Younger children were also at greater risk of being bitten or stung by a nonvenomous insect than children aged 10 and over (Figure 26).

FIGURE 26: NON-FATAL INJURY FROM ANIMATE MECHANICAL FORCES IN CHILDREN AGED 0–14 BY LEADING CAUSE AND AGE GROUP, 2008–2012.

![Bar chart showing hospitalisations per 100,000 children by age group and leading cause of injury.]

- All animate mechanical forces
- Accidental hit, strike, kick, twist, bite or scratch by another person
- Contact with dog
- Bitten or stung by nonvenomous insect and other nonvenomous arthropods

$r = -0.34$ (a weak linear relationship).
Distribution by gender and ethnicity

Boys were nearly twice as likely to be hospitalised from non-fatal animate mechanical force injuries as girls between 2008 and 2012 (Figure 27). In particular, boys were hospitalised from being accidentally hit, kicked, twisted, bit, or scratched by another person at three times the rate of girls.

FIGURE 27: NON-FATAL INJURY FROM ANIMATE MECHANICAL FORCES IN CHILDREN AGED 0–14 BY LEADING CAUSE AND GENDER, 2008-2012.

Māori children had the highest rate of hospitalisation from animate mechanical force injury, with nearly five times the rate of hospitalisation than Asian children, and twice the rate of European/other children. Pacific Island children had the second-highest hospitalisation rate. In particular, Māori children had the highest rate of injury from contact with dogs, with around 22 in every 100,000 Māori children hospitalised with non-fatal injuries from contact with dogs between 2008 and 2012 (Figure 28).

FIGURE 28: NON-FATAL INJURY FROM ANIMATE MECHANICAL FORCES IN CHILDREN AGED 0–14 BY LEADING CAUSE AND ETHNICITY, 2008-2012.

- All animate mechanical forces
- Accidental hit, strike, kick, twist, bite or scratch by another person
- Contact with dog
- Bitten/stung by nonvenomous insect/other nonvenomous arthropods

Relevant legislation and standards

Dog Control Act 1996

Banned breeds

Dog control bylaws

Prevention

Responsible dog ownership, including separating young children from dogs, avoiding high risk dogs, neutering, regulatory enforcement, and standardised monitoring of bites have been suggested as prevention strategies, along with teaching children how to approach a dog safely. The efficacy of these approaches is uncertain but promising.

Animate forces evidence at a glance

- Educating families on neutering male dogs and avoiding choosing unsafe breeds as pets – uncertain
- Educating children on how to interact with pet dogs - uncertain

Animate forces evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforcement</td>
<td>Limiting dog ownership such as restricting the number of dogs per household, placing the onus of responsibility on the dog owner [245]. It is unclear if dog control policies are having the intended effect [246].</td>
</tr>
<tr>
<td>Education</td>
<td>Educating parents about unsafe breeds e.g. some breeds are more likely to bite nonmembers of the household. [247]. The identification of valid and reliable guidelines for safe interaction between children and pet dogs in their homes or known to them and their incorporation in a range of age-appropriate educational resources [246]. It is unclear whether educating children can reduce dog bite injuries in children and adolescents [247].</td>
</tr>
</tbody>
</table>
Summary

- Poisoning is the fifth-leading cause of non-fatal unintentional injury in children aged 0 to 14. Around 310 children die or are hospitalised from unintentional poisoning each year, which is around 34 in every 100,000 children. There has been a slight decline in hospitalisations from unintentional poisoning in children since 2001.

- Poisoning disproportionately affects younger children, with around four in every five hospitalisations from unintentional poisoning between 2008 and 2012 in children aged four years and under. Poisoning is most frequently caused by the ingestion of various drugs, medicaments, and biological substances.

- Male and female children were hospitalised with unintentional poisoning injuries at similar rates, though Māori children were disproportionately likely to be hospitalised from poisoning.

- We could reduce the burden of child injury from poisoning in New Zealand through:
 - Use of child resistant packaging, locked cupboards and child resistant door catches – good evidence.
 - Protection from toxic substances through storage i.e. out of the reach and sight of children, in a locked high cupboard – good evidence.
 - Storing toxic substances in original packaging – some evidence.
 - Contacting the National Poisons Centre for expert information – good evidence.
The big picture

Poisoning is the fifth-leading cause of non-fatal unintentional injury in children aged 0 to 14. Between 2008 and 2012, 1,541 children were hospitalised with non-fatal poisoning injuries, and a further ten died from unintentional poisoning.

Taken together, this means that around 310 children die or are hospitalised from unintentional poisoning each year, which is around 34 in every 100,000 children.

Changes over time

There has been a slight decline in non-fatal poisoning injuries since 2001, with 40.8 in every 100,000 children hospitalised in 2001 and 31.2 in 2012 (Figure 30). 58

FIGURE 30: INJURIES (FATAL AND NON-FATAL) FROM POISONING IN CHILDREN AGED 0–14 OVER TIME, 2001 TO 2012.

58 r=-0.72 (a strong linear relationship).
Leading cause by age group

Unintentional poisoning disproportionately affects younger children, with around four in every five hospitalisations from unintentional poisoning between 2008 and 2012 in children aged four years and under (Figure 31).

Poisoning in the 0 to 4 age group was most frequently caused by the ingestion of various drugs, medicaments, and biological substances, as outlined in Appendix B, Table B 4. Unintentional poisoning from alcohol was more common in children aged 10 to 14 than in other age groups.

FIGURE 31: NON-FATAL INJURY FROM POISONING IN CHILDREN AGED 0–14 BY LEADING CAUSE AND AGE GROUP, 2008-2012.

Distribution by gender and ethnicity

Male and female children were hospitalised with unintentional poisoning injuries at similar rates between 2008 and 2012, with around 32 in every 100,000 female children hospitalised and 36 in every 100,000 males.

Māori children were disproportionately likely to suffer a non-fatal injury from unintentional poisoning between 2008 and 2012, with a rate of hospitalisation 1.5 times that of European/other children, twice that of Pacific Island children, and nearly four times that of Asian children. During this time period, around 49 Māori children in every 100,000 were hospitalised from non-fatal unintentional poisoning injuries, compared with 27 European/other, 20 Pacific Island, and 12 Asian.

Relevant legislation and standards

There is no one law or standard covering hazardous substances and packaging requirements. The laws and standards are currently difficult to navigate.

It is noted that there is no current New Zealand standard to guide child resistant packaging. The standard (NZS 5825:1991) Child Resistant Packages, was withdrawn in September 2014. The requirements for pharmacists to use child resistant caps are detailed in the Pharmacy Practice Handbook. Contact the Pharmaceutical Society of New Zealand for details. The required use of safety caps on oral liquid formulations, however, is mandated and listed in Section G of Pharmaceutical Schedule supporting the Medicines Regulations and is determined by the Ministry of Health.

Hazardous substances are allocated to different group standards which guide requirements for safe use and the use of child resistant packaging requirements for individual products and substances.

Prevention

Prevention strategies tend to focus on effective barriers between children and poisonous substances, in particular through the use of safe storage such as high and locked cupboards, and through child resistant packaging and child resistant closures on bottles of medicine, cleaners and chemicals. Child resistant closures, however, are not child-proof. It is also recommended that poisons, cleaning products and medications are stored in their original packaging, and never placed in food or drink containers. They should be safely disposed of after use.

Further information and resources

Poisoning prevention and assessment of evidence at a glance

- Use of child resistant packaging – good
- Protection from toxic substances through storage, transport etc. – good
- National Poisons Centre for expert information – good.
- Storing toxic substances in original packaging – some evidence.
Poisoning prevention evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
</table>
| **Engineering** | Secure storage of medications and poisons removes a larger portion of poisoning risk than parental supervision, and may be an effective means of poisoning prevention [48,55].
 Design improvements to packaging and the home environment should be supported by: regulation and education of industry (including clear packaging warning labels), community education regarding supervision and storage and actions to increase accessibility and affordability [215,216]. |
| **Enforcement** | Legislation requiring child resistant packaging (CRP) reduces the incidence of poisoning [48,217].
 International evidence suggests that child-resistant packaging legislation should include all prescription and over-the-counter medications and other hazardous substances [172]. New Zealand legislation requires CRP for specific medicines and chemicals [218,219]. |
| **Education** | Poison control centres are effective if the public is well informed on how to utilise them [217,220-222].
 Educational and home-based interventions increase child and parent/caregiver knowledge of poisons [31], and are effective in increasing safe storage behaviour [170][215]
 Home based educational interventions to increase safe storage of medication and cleaning products are effective in increasing safe storage behaviour. Providing safety locks may increase the effectiveness of interventions to increase safe storage of cleaning products, however, more research is needed in this area [215]. |
Summary

- Burns are the fourth-leading cause of death from unintentional injury in children, and the sixth-leading cause of non-fatal injury. Around 284 children are hospitalised or die from burns each year, which is about 31 in every 100,000. Most non-fatal burn injuries in children are caused by contact with a hot substance or object, while most fatal injuries are caused by exposure to fire or flames.

- Nearly all burn injuries took place within the home, especially the kitchen, and affected children under the age of four. Non-fatal burns were most commonly caused by contact with hot fluids, particularly drinks, food, and fats.

- Pacific Island and Māori children had hospitalisation rates from burns roughly twice those of Asian and European/other children between 2008 and 2012. Male children were also disproportionately affected by burns; with a hospitalisation rate about 1.5 times that of females.

- We could reduce the burden of child injury from burns in New Zealand by
 - Reducing the ignition and burning behaviour of dwellings – good evidence.
 - Installing potentially hazardous equipment such as gas or solid fuel heaters safely – good evidence.
 - Use of working smoke detectors – good evidence.
 - Fire resistant composition of upholstered furniture – good evidence.
 - Child resistant cigarettelighters – good evidence.
 - Firelighter interventions and education campaigns such as Firewise and No Cooking when Drunk – promising.
 - Reducing hot water temperatures to 50 degrees Celsius – good evidence.
The big picture

Burns were the fifth-leading cause of death from unintentional injury in children, and the seventh-leading cause of non-fatal injury. Between 2008 and 2012, each year around 281 children were hospitalised from burns, and more than 3 died from burns between 2006 and 2010.

Taken together, this means that around 284 children are hospitalised or die from unintentional burns each year, which is about 31 in every 100,000.

While the majority of most non-fatal burns in children between 2008 and 2012 resulted from contact with a hot object or substance (86%), all fatal burns between 2006 and 2010 were caused by exposure to fire or flames.

Changes over time

There has been a slight decline in the rate of burn fatalities in children since 2001, though because fatality numbers are small this should be interpreted with caution. Non-fatal injuries have not shown a steady decline, though injury rates in 2012 were slightly lower than in 2001 (32.2 children per 100,000 compared with 39.6).

Leading cause by age group

Of those non-fatal burns where a location was specified, nearly all (94%) took place within the home, especially the kitchen.

Over three-quarters (77%) of hospitalisations from burns among children between 2008 and 2012 affected those aged four years and under. Non-fatal burns were most commonly caused by contact with hot fluids, particularly hot drinks, food, and fats (Figure 33).

59 r=-0.85 (a strong linear relationship).
60 r=-0.58 (a moderately strong linear relationship).
Distribution by gender and ethnicity

Male children aged 0 to 14 were hospitalised from burns at around 1.5 times the rate of females between 2008 and 2012. During this period, around 37 in every 100,000 male children were hospitalised from non-fatal burns, compared with 26 in every 100,000 female children. Pacific Island and Māori children were hospitalised from burns at roughly twice the rate of Asian and European/other children between 2008 and 2012. During this period, around 45 in every 100,000 Pacific Island children and 44 Māori were hospitalised with non-fatal burn injuries, compared with 25 Asian and 16 European/other children.

61 95% confidence intervals did not overlap, with the lower bound for male children at 31.4 hospitalisations from burns per 100,000, and the upper bound for females at 28.8 per 100,000.

Relevant legislation and standards

Cigarette lighter standard

This requires disposable lighters and cheap refillable ones to be child resistant. (The regulations are based on ISO 9994 1995E and 16 CRF 121.4)

Children’s nightwear standard

This standard applies to all children’s nightwear (size 00 to 14) and some daywear (knitted all in one garments from sizes 00-2) and declares that these should have reduced fire hazard. (AS/NZS 1249:2003)

Water temperature

The NZ Building Code, Clause G12 requires the use of a tempering valve to permit the storage to be above 60 degrees Celsius and delivery to be below 55 degrees Celsius in new buildings and installations.
http://www.branz.co.nz/cms_show_download.php?id=2c46cd486e0ee3acee9988f06c1507e1626e8af (p.9)

Prevention

Prevention measures focusing on reducing the burning behaviour of dwellings, smoke detectors, child resistant lighters and fire resistant nightwear help to prevent injuries from burns. Prevention measures such as reducing hot water tap temperatures have been shown to be effective in reducing burns.

Burns prevention at a glance

- Reducing the ignition and burning behaviour of dwellings, installing potentially hazardous equipment such as gas or solid fuel heaters safely – good evidence
- Use of working smoke detectors – good evidence
- Fire resistant composition of upholstered furniture – good evidence
- Child resistant cigarette lighters – good evidence
- Fire resistant fabric for children’s nightwear – very good evidence
- Firelighter interventions and education campaigns such as Firewise and not cooking drunk – promising.
- Turning down hot water tap temperatures – good evidence
Burns prevention evidence

<table>
<thead>
<tr>
<th>Effective interventions</th>
<th>Evidence</th>
</tr>
</thead>
</table>
| **Engineering** | The New Zealand mandatory Product Safety Standards (Cigarette Lighters) Regulations 1998 provides tests to ensure that cigarette lighters cannot be easily operated by children aged less than five years (to be updated in late 2015) [142].
Product safety standards and modifications, such as wide based ‘no spill’ cups and stove guards, are effective means to prevent injuries [138].
Fire resistant composition of upholstered materials. |
| Correctly installed and charged smoke alarms with working batteries are effective early warning devices that reduce injury [138,141]. | Use of smoke alarms is recommended by the American Academy of Pediatrics to prevent fatality and injury from residential fires [145]. |
| **Enforcement** | Legislation to reduce thermostat settings, coupled with annual educational notices to households would generate significant cost savings and reduce tap water burns [154].
Legislation regulating the temperature of household hot water from taps by requiring a safe pre-set temperature for all hot water cylinders is effective in reducing burns, and more effective than educational interventions alone [55,138,147,148].
Legislation requiring installation of smoke detectors in new and existing housing is an effective way to increase smoke detector use when combined with multi-factorial community campaigns and reduced price smoke alarms [138].
Introduction and enforcement of a smoke alarm mandatory standard for all New Zealand buildings and dwellings would save an estimated nine lives annually; addition of a mandatory standard for ignition resistance of upholstered furniture and mattresses would increase the estimated number of lives saved annually to 13 [157].
Legislation regulating flammability of sleepwear is effective in reducing burn injuries when enforced [138,158].
Legislation banning the manufacture and sale of fireworks combined with enforcement is the most effective way to restrict supply and prevent fireworks-associated injury [138,161-163].
In New Zealand legislation was tightened in 2008, and limits the types of fireworks available, requires testing certificates for available fireworks, limits sparkler sales to fireworks packages of a limited number, and prohibits the sale of fireworks outside a yearly four day period, and to minors (less than 18 years) [164].
ACC claims for fireworks-related injuries for children aged 0-14 years have decreased by 41 percent since legislation changes to restrict access to fireworks [165].
Countries with legislation restricting or banning the sale of fireworks show an 87 percent post-legislation reduction in the incidence rate of firework-related ophthalmic trauma [166].
Education and advocacy campaigns around fireworks are useful as supplemental efforts to support legislation [138,141]. |
| Reducing ignition and burning behaviour of dwellings.
Safe installation of potential hazards: solid fuel heaters.
Safe installation of gas / electricity. | These legal regulations address risks identified from analyses of fires. Enforcement is through the NZ Building Act (2004) and associated Compliance Documents and Standards, and the Electricity Act (1992) and Gas Act (1992) which detail certification requirements and licensing of trade personnel. |
| Education | Community, school and home-based interventions and campaigns may increase burn and scald prevention knowledge and reduce injury, however further research is needed [55,138,173]. | Community and home based smoke alarm interventions increase the proportion of households with functional smoke alarms [141,170,171]. Smoke alarm installation interventions are more successful when they originate from a community identifying burns prevention as an area of community interest, support a trust relationship with householders from high risk communities, involve an education component and are embedded into wider health programmes [171]. A New Zealand community injury prevention intervention including a media campaign and home based educational programme on hot tap water temperature led to significant reductions in hot tap water temperatures [150]. Educational interventions that provide a tangible object, such a thermometer to enable measurement of hot tap water temperature, are more effective in reducing hot tap water temperature than education alone [138]. |
| Fire safety skills training increases child and parent knowledge, and fire safety behaviour [138,175]. | Evaluation of the New Zealand Fire Service Firewise school education programme found the programme increased children’s knowledge of the dangers of smoke and fire, and of safety behaviours compared with children’s knowledge from schools that had not run the programme [176]. A three-year evaluation of a New Zealand primary school-based educational intervention run by fire fighters, which introduced children to a new information module each year, found that children’s skills improved in some areas of fire safety compared with baseline results [177]. Programmes involving authority figures (fire fighters), and using active participation, fear reduction techniques and teaching the rationale for fire safety behaviours improve knowledge and skill retention, particularly if programmes are periodically repeated [175]. |
Child Unintentional Deaths and Injuries in New Zealand, and Prevention Strategies
Prevention References

Appendix A: Further information on data and methods

As outlined in section 1.2, mortality data are from the National Mortality Collection, and include deaths among children aged 0–14 years between 2006 and 2010 whose main underlying cause of death was an unintentional injury (V01–Y36).

Non-fatal unintentional injury data are from the National Minimum Data Set (NMDS), and focus on non-fatal hospitalisations among children aged 0–14 between 2008 and 2012. The following were excluded from our data: 1) discharge records with an Emergency Medicine Specialty code (M05–M08) on discharge; and 2) discharge records with the following E code ranges: Y40–Y89 (complications of drugs/medical/surgical care and late sequelae of injury), X60–Y09 (intentional self-harm or assault) and Y10–Y34 (undetermined intent).

Note that hospitalisation data exclude day patients (those who do not stay in the hospital past midnight) and all cases of re-admission for the same injury. Since July 2009 it has been compulsory for DHBs to also report any short stays in the emergency department (ED), in which the patient is seen for at least three hours but is not admitted as an inpatient. Prior to 2009 some DHBs reported short-stay ED events but others did not, which means that the decline in hospitalisations of non-fatal injuries between 2001 and 2012 may be underestimated.

Injury codes

Causes of injury were assigned using the hospitalisation primary ICD 10 AM version 1 codes.

Detailed analyses on injury due to falls, inanimate cause of death as follows: pedestrian (V01–V09), cyclist (V10–V19), motorbike (V20–29), vehicle occupant (V40–79), other land transport (V30–39, V80–89); other transport (V90–V99); falls (W00–W19), inanimate mechanical forces (W20–W49), animate mechanical forces (W50–64), drowning or submersion (W65–74), suffocation (W75–W84), thermal injury (W85–X19), and poisoning (X40–X49). Land transport injuries (V01–V89) are further categorised into traffic crash and non-traffic using the fourth digit of the primary E code. or animate mechanical forces, suffocation, and poisoning use the primary E code as submitted to the NMDS, while the remainder of the report uses the primary E code as mapped to ICD-10-AM version 1. Place or location of injury is assigned using the Y92 code associated with the primary E code (as submitted to the NMDS) or the fourth digit of the primary E code for codes submitted in ICD-10-AM version 1.
Table B1: Numbers, Rates (per 100,000), and Percentages of Leading Causes from Non-Fatal Fall Injuries in Children Aged 0–14, 2008–2012.

<table>
<thead>
<tr>
<th></th>
<th>0–4</th>
<th></th>
<th>5–9</th>
<th></th>
<th>10–14</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Rate</td>
<td>%</td>
<td>No.</td>
<td>Rate</td>
<td>%</td>
<td>No.</td>
<td>Rate</td>
</tr>
<tr>
<td>Fall involving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>playground equipment</td>
<td>1243</td>
<td>79.9</td>
<td>23.3%</td>
<td>3960</td>
<td>271.5</td>
<td>50.7%</td>
<td>983</td>
<td>65.1%</td>
</tr>
<tr>
<td>Fall on same level</td>
<td>604</td>
<td>38.8</td>
<td>11.3%</td>
<td>616</td>
<td>42.2</td>
<td>7.9%</td>
<td>748</td>
<td>49.5%</td>
</tr>
<tr>
<td>from slipping, tripping and stumbling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall involving ice-skates, skis, roller-skates or skateboards</td>
<td>164</td>
<td>10.5</td>
<td>3.1%</td>
<td>497</td>
<td>34.1</td>
<td>6.4%</td>
<td>1044</td>
<td>69.1%</td>
</tr>
<tr>
<td>Other fall on same level</td>
<td>300</td>
<td>19.3</td>
<td>5.6%</td>
<td>364</td>
<td>25.0</td>
<td>4.7%</td>
<td>553</td>
<td>36.6%</td>
</tr>
<tr>
<td>Other fall from one level to another</td>
<td>446</td>
<td>28.7</td>
<td>8.3%</td>
<td>369</td>
<td>25.3</td>
<td>4.7%</td>
<td>311</td>
<td>20.6%</td>
</tr>
<tr>
<td>Fall from, out of or through building or structure</td>
<td>385</td>
<td>24.7</td>
<td>7.2%</td>
<td>427</td>
<td>29.3</td>
<td>5.5%</td>
<td>285</td>
<td>18.9%</td>
</tr>
<tr>
<td>Other fall on same level due to collision with, or pushing by, another person</td>
<td>51</td>
<td>3.3</td>
<td>1.0%</td>
<td>207</td>
<td>14.2</td>
<td>2.7%</td>
<td>703</td>
<td>46.5%</td>
</tr>
<tr>
<td>Fall from tree</td>
<td>57</td>
<td>3.7</td>
<td>1.1%</td>
<td>526</td>
<td>36.1</td>
<td>6.7%</td>
<td>255</td>
<td>16.9%</td>
</tr>
<tr>
<td>Fall involving chair</td>
<td>604</td>
<td>38.8</td>
<td>11.3%</td>
<td>180</td>
<td>12.3</td>
<td>2.3%</td>
<td>53</td>
<td>3.5%</td>
</tr>
<tr>
<td>Fall involving bed</td>
<td>482</td>
<td>31.0</td>
<td>9.0%</td>
<td>148</td>
<td>10.1</td>
<td>1.9%</td>
<td>42</td>
<td>2.8%</td>
</tr>
<tr>
<td>Unspecified fall</td>
<td>221</td>
<td>14.2</td>
<td>4.1%</td>
<td>193</td>
<td>13.2</td>
<td>2.5%</td>
<td>180</td>
<td>11.9%</td>
</tr>
<tr>
<td>Fall on and from stairs and steps</td>
<td>283</td>
<td>18.2</td>
<td>5.3%</td>
<td>145</td>
<td>9.9</td>
<td>1.9%</td>
<td>120</td>
<td>7.9%</td>
</tr>
<tr>
<td>Fall while being carried or supported by other persons</td>
<td>269</td>
<td>17.3</td>
<td>5.0%</td>
<td>28</td>
<td>1.9</td>
<td>0.4%</td>
<td>20</td>
<td>1.3%</td>
</tr>
<tr>
<td>Fall involving other furniture</td>
<td>182</td>
<td>11.7</td>
<td>3.4%</td>
<td>42</td>
<td>2.9</td>
<td>0.5%</td>
<td>11</td>
<td>0.7%</td>
</tr>
<tr>
<td>Fall from cliff</td>
<td>16</td>
<td>1.0</td>
<td>0.3%</td>
<td>28</td>
<td>1.9</td>
<td>0.4%</td>
<td>75</td>
<td>5.0%</td>
</tr>
<tr>
<td>Diving or jumping into water causing injury other than drowning or submersion</td>
<td>2</td>
<td>0.1</td>
<td>0.0%</td>
<td>20</td>
<td>1.4</td>
<td>0.3%</td>
<td>72</td>
<td>4.8%</td>
</tr>
<tr>
<td>Fall on and from ladder</td>
<td>33</td>
<td>2.1</td>
<td>0.6%</td>
<td>41</td>
<td>2.8</td>
<td>0.5%</td>
<td>14</td>
<td>0.9%</td>
</tr>
<tr>
<td>Fall involving wheelchair</td>
<td>3</td>
<td>0.2</td>
<td>0.1%</td>
<td>4</td>
<td>0.3</td>
<td>0.1%</td>
<td>9</td>
<td>0.6%</td>
</tr>
<tr>
<td>Fall on same level involving ice and snow</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>2</td>
<td>0.1</td>
<td>0.0%</td>
<td>9</td>
<td>0.6%</td>
</tr>
<tr>
<td>Fall on and from scaffolding</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>6</td>
<td>0.4</td>
<td>0.1%</td>
<td>1</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>5345</td>
<td>343.6</td>
<td>100.0%</td>
<td>7803</td>
<td>535.0</td>
<td>100.0%</td>
<td>5488</td>
<td>363.2</td>
</tr>
</tbody>
</table>

TABLE B 2: NUMBERS, RATES (PER 100,000), AND PERCENTAGES OF LEADING CAUSES FROM NON-FATAL INANIMATE MECHANICAL FORCE INJURY IN CHILDREN AGED 0–14, 2008–2012.

<table>
<thead>
<tr>
<th>External cause</th>
<th>0-4</th>
<th>5-9</th>
<th>10-14</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Rate</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Caught, crushed, jammed or pinched in or between objects</td>
<td>1505</td>
<td>96.7</td>
<td>45.1%</td>
<td>657</td>
</tr>
<tr>
<td>Striking against or struck by other objects</td>
<td>337</td>
<td>21.7</td>
<td>10.1%</td>
<td>264</td>
</tr>
<tr>
<td>Contact with sharp glass</td>
<td>175</td>
<td>11.2</td>
<td>5.2%</td>
<td>318</td>
</tr>
<tr>
<td>Foreign body entering into or through eye or natural orifice</td>
<td>583</td>
<td>37.5</td>
<td>17.5%</td>
<td>157</td>
</tr>
<tr>
<td>Struck by thrown, projected or falling object</td>
<td>294</td>
<td>18.9</td>
<td>8.8%</td>
<td>164</td>
</tr>
<tr>
<td>Foreign body or object entering through skin</td>
<td>105</td>
<td>6.7</td>
<td>3.1%</td>
<td>215</td>
</tr>
<tr>
<td>Striking against or struck by sports equipment</td>
<td>27</td>
<td>1.7</td>
<td>0.8%</td>
<td>91</td>
</tr>
<tr>
<td>Exposure to other inanimate mechanical forces</td>
<td>86</td>
<td>5.5</td>
<td>2.6%</td>
<td>118</td>
</tr>
<tr>
<td>Contact with nonpowered hand tool</td>
<td>76</td>
<td>4.9</td>
<td>2.3%</td>
<td>59</td>
</tr>
<tr>
<td>Contact with knife, sword or dagger</td>
<td>51</td>
<td>3.3</td>
<td>1.5%</td>
<td>52</td>
</tr>
<tr>
<td>Contact with other and unspecified machinery</td>
<td>39</td>
<td>2.5</td>
<td>1.2%</td>
<td>20</td>
</tr>
<tr>
<td>Contact with other powered hand tools and household machinery</td>
<td>26</td>
<td>1.7</td>
<td>0.8%</td>
<td>22</td>
</tr>
<tr>
<td>Contact with powered lawn mower</td>
<td>11</td>
<td>0.7</td>
<td>0.3%</td>
<td>19</td>
</tr>
<tr>
<td>Accidental discharge and malfunction from other and unspecified firearms and guns</td>
<td>1</td>
<td>0.1</td>
<td>0.0%</td>
<td>7</td>
</tr>
<tr>
<td>Contact with lifting and transmission devices, not elsewhere classified</td>
<td>11</td>
<td>0.7</td>
<td>0.3%</td>
<td>2</td>
</tr>
<tr>
<td>Discharge of firework</td>
<td>2</td>
<td>0.1</td>
<td>0.1%</td>
<td>7</td>
</tr>
<tr>
<td>Contact with agricultural machinery</td>
<td>3</td>
<td>0.2</td>
<td>0.1%</td>
<td>7</td>
</tr>
<tr>
<td>Explosion of other materials</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>1</td>
</tr>
<tr>
<td>Explosion and rupture of gas cylinder</td>
<td>3</td>
<td>0.2</td>
<td>0.1%</td>
<td>3</td>
</tr>
<tr>
<td>Accidental handgun discharge and malfunction</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Explosion and rupture of pressurized tire, pipe or hose</td>
<td>1</td>
<td>0.1</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Explosion and rupture of other specified pressurized devices</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>1</td>
</tr>
<tr>
<td>Contact with hypodermic needle</td>
<td>1</td>
<td>0.1</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3337</td>
<td>214.5</td>
<td>100.0%</td>
<td>2184</td>
</tr>
</tbody>
</table>
TABLE B 3: NUMBERS, RATES (PER 100,000), AND PERCENTAGES OF LEADING CAUSES FROM NON-FATAL ANIMATE MECHANICAL FORCE INJURY IN CHILDREN AGED 0–14, 2008-2012.

<table>
<thead>
<tr>
<th>Cause</th>
<th>0-4</th>
<th>5-9</th>
<th>10-14</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Rate</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Accidental hit, strike, kick, twist, bite or scratch by another person</td>
<td>117</td>
<td>7.5</td>
<td>18.6%</td>
<td>139</td>
</tr>
<tr>
<td>Contact with dog</td>
<td>267</td>
<td>17.2</td>
<td>42.5%</td>
<td>199</td>
</tr>
<tr>
<td>Bitten or stung by nonvenomous insect and other nonvenomous arthropods</td>
<td>154</td>
<td>9.9</td>
<td>24.5%</td>
<td>87</td>
</tr>
<tr>
<td>Accidental striking against or bumped into by another person</td>
<td>43</td>
<td>2.8</td>
<td>6.8%</td>
<td>82</td>
</tr>
<tr>
<td>Contact with other mammals</td>
<td>36</td>
<td>2.3</td>
<td>5.7%</td>
<td>33</td>
</tr>
<tr>
<td>Contact with nonvenomous plant thorns and spines and sharp leaves</td>
<td>3</td>
<td>0.2</td>
<td>0.5%</td>
<td>24</td>
</tr>
<tr>
<td>Crushed, pushed or stepped on by crowd or human stampede</td>
<td>3</td>
<td>0.2</td>
<td>0.5%</td>
<td>5</td>
</tr>
<tr>
<td>Exposure to other animate mechanical forces</td>
<td>3</td>
<td>0.2</td>
<td>0.5%</td>
<td>5</td>
</tr>
<tr>
<td>Contact with rodent</td>
<td>2</td>
<td>0.1</td>
<td>0.3%</td>
<td>0</td>
</tr>
<tr>
<td>Contact with nonvenomous marine animal</td>
<td>0</td>
<td>0.0</td>
<td>0.0%</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>628</td>
<td>40.4</td>
<td>100.0%</td>
<td>574</td>
</tr>
</tbody>
</table>
TABLE B 4: NUMBERS, RATES (PER 100,000), AND PERCENTAGES OF LEADING CAUSES FROM NON-FATAL POISONING INJURY IN CHILDREN AGED 0–14, 2008-2012.

<table>
<thead>
<tr>
<th></th>
<th>0-4</th>
<th>5-9</th>
<th>10-14</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Rate</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Other and unspecified</td>
<td>336</td>
<td>21.6</td>
<td>26.5%</td>
<td>28</td>
</tr>
<tr>
<td>drugs, medicaments,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>substances</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antiepileptic,</td>
<td>237</td>
<td>15.2</td>
<td>18.7%</td>
<td>43</td>
</tr>
<tr>
<td>sedative-hypnotic,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antiparkinsonism and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>psychotropic drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonopioid analgesics,</td>
<td>236</td>
<td>15.2</td>
<td>18.6%</td>
<td>15</td>
</tr>
<tr>
<td>antipyretics, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antirheumatics (including</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paracetamol)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure to other and</td>
<td>193</td>
<td>12.4</td>
<td>15.2%</td>
<td>36</td>
</tr>
<tr>
<td>unspecified chemicals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and noxious substances</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narcotics and</td>
<td>111</td>
<td>7.1</td>
<td>8.8%</td>
<td>7</td>
</tr>
<tr>
<td>(hallucinogens), not</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>elsewhere classified</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic solvents</td>
<td>50</td>
<td>3.2</td>
<td>3.9%</td>
<td>0</td>
</tr>
<tr>
<td>and halogenated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hydrocarbons and their</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vapours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other drugs acting on</td>
<td>51</td>
<td>3.3</td>
<td>4.0%</td>
<td>3</td>
</tr>
<tr>
<td>the autonomic nervous</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides</td>
<td>35</td>
<td>2.2</td>
<td>2.8%</td>
<td>7</td>
</tr>
<tr>
<td>Alcohol</td>
<td>10</td>
<td>0.6</td>
<td>0.8%</td>
<td>4</td>
</tr>
<tr>
<td>Other gases and</td>
<td>8</td>
<td>0.5</td>
<td>0.6%</td>
<td>1</td>
</tr>
<tr>
<td>vapours</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1267</td>
<td>81.4</td>
<td>100.0%</td>
<td>144</td>
</tr>
</tbody>
</table>

Glossary

External Injury Causes (unintentional unless otherwise indicated):

- Animate Mechanical Forces - Injury to a person struck, bitten, or otherwise injured by a human or animal, such as a dog, or insect.
- Assault - Injury purposely inflicted by other persons
- Cut/Pierce - Injuries caused by cutting and piercing instruments or objects
- Pedal Cyclist Other - Rider or passenger on a pedal cycle involved in a crash off a public road
- Drowning - Injury from submersion while engaged in sport or recreational activities, while swimming, in bathtub, or following a water transport crash
- Fall - Injury resulting from a fall, e.g. from stairs, tripping, slipping, or from playground equipment
- Firearm – Injury caused from the discharge of a firearm
- Fire/Flame - Injury caused by fire and flames e.g. conflagration in private dwelling, conflagration in other building or structure, ignition of clothing, ignition of highly flammable material
- Hot object/Substance - Injuries caused by hot substance or object, caustic or corrosive material and steam
- Inanimate Mechanical Forces – Injury to a person struck by, cut, or otherwise injured by an object. This includes being caught, crushed, jammed, or pinched between objects. It can include sports injuries, jammed fingers, and injuries from sharp objects such as knives, scissors, or glass.
- Intentional injuries - Injuries caused by intended events e.g. injuries inflicted upon a person through suicide / self-inflicted or homicide / assault.
- Machinery - Injury caused by machinery
- MVT Occupant - Driver or passenger of a motorised transport vehicle, including car, van, truck, bus etc. involved in a crash on a public road
- MVT Pedal Cyclist - Rider or passenger on a pedal cycle involved in a crash on a public road
- MVT Pedestrian - Any person involved in a crash on a public road who was not at the time of the accident riding in or on a motor vehicle, railway train, tram, animal-drawn or other vehicle, or on a pedal cycle or animal
- MVT Motorcyclist - Rider or passenger on a motorcycle involved in a crash on a public road
- Natural/Environmental - Injuries from natural and environmental factors, e.g. excessive heat, excessive cold, hunger, neglect, venomous animals and plants, other injury caused by animals, lightning, cataclysmic storms, floods, earth surface movements, or other and unspecified environmental cause
- Other Land Transport – Injury from a non-transport crash excluding a motor vehicle on a public road e.g. special terrain vehicles designed for off road use, special vehicle mainly used in agriculture injured in non-transport, motorcycle motor vehicles not on a public road, animals being ridden
- Other specified - All other specified causes of unintentional injury e.g. Caught, crushed, jammed or pinched in or between objects; Explosion and rupture of boiler; Foreign body entering into or through eye or natural orifice; Exposure to other and unspecified inanimate mechanical forces; Exposure to electric transmission lines; Contact with explosive material, undetermined intent; Falling, lying or running before or into moving object, undetermined intent etc.
- Other Transport - Injury from a transport crash excluding a motor vehicle on a public road, e.g. water transport, air and space transport.
- Overexertion - Injury from overexertion and strenuous movement e.g. lifting, pulling, pushing, excessive physical exercise
- Poisoning - Poisoning by drugs, medicinal substances, biological, other solid and liquid substances, gases or vapours
- Self-Inflicted - Injury resulting from intentional self-harm
- Struck by or against - Injury from being struck by a falling object, or striking against, or being struck by objects or persons
- Suffocation – Injury caused by accidental threats to breathing e.g. accidental suffocation and strangulation in bed, inhalation of gastric contents or inhalation and ingestion of food causing obstruction of respiratory tract, other accidental hanging and strangulation
- Unintentional injuries - Injuries caused by unintended events e.g. injuries from falls, motor vehicle crashes, drowning, burns, poisonings etc.
- Unspecified - Where the cause of unintentional injury has not been specified in the coding
- Undetermined Intent – Where the intent of the injury has not been determined
- Suffocation – Injury caused by accidental threats to breathing e.g. accidental suffocation and strangulation in bed, inhalation of gastric contents or inhalation and ingestion of food causing obstruction of respiratory tract, other accidental hanging and strangulation
Section References

Note: Those bolded are recommended reading.

Motor vehicle

Non Motor Vehicle References

Child Pedestrian Safety References

[64] Child and Youth Mortality Review Committee Te Ropū Arotake Auau Mate o te Hunga Tamariki Taiohi, Low speed run over mortality, Wellington, New Zealand, Child and Youth Mortality Review Committee: 2011.

[80] A letter of support for article, see [82] below.

[86] Barker, R., Putting the brakes on low speed vehicle run over - an opportunity to act. Forum report June 2012, Queensland, Australia, Queensland Injury Prevention Council: 2012. (note this is a summary of forum content not an evaluation.)

Cycle safety

[50] Bunn, F., Collier, T., Frost, C., Ker, K., Roberts, I. and Wentz, R., Area-wide traffic calming for preventing traffic related injuries, Cochrane Database of Systematic Reviews 2009. [n.b. tentative effect but robust review]

[88] Thompson, D.C., Rivara, F.P. and Thompson, R., Helmets for preventing head and facial injuries in bicyclists, Cochrane Database of Systematic Reviews: 2009.

[95] Scuffham, P., Alsop, J., Cryer, C. and Langley, J.D., “Head
injuries to bicyclists and the New Zealand bicycle helmet law” Accident Analysis and Prevention, 2000, 32(4): 555-574

Choking/Strangulation Prevention References

Falls Prevention References

Water Safety References

[124] Seattle Children’s Hospital, Life jacket loaner guide, Seattle, Washington, Seattle Children’s Hospital: 2011

Animate and inanimate mechanical injuries

Poisoning Prevention References

[219] “Pharmacy Contractors Section 51 Advice Notice” 1997

Burns Prevention References

[165]: ACC unpublished data

Safekids Aotearoa’s mission is to reduce the incidence and severity of unintentional injuries to children in New Zealand aged 0-14 years.